6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронные схемы управления двигателями

Статьи

Применение арматуры при монтаже СИП

Сравнение ламп накаливания, светодиодных и газоразрядных

Электромонтаж в квартире — примерный расчет смет

УЗО в двух-проводке: ставить или не ставить?

Монтаж серверной стойки

Как выбрать розетки и выключатели

Таблица сечения проводов по току и мощности

Инфракрасные обогреватели — устройство и применение

Электронный смеситель с фотоэлементом

Диммер — светорегулятор

FordManual.ru

  • ‹‹‹ Схема 3. Система питания. Электрические схемы Ford Fusion
  • Схема 4. Система пуска двигателя автомобилей с механической коробкой. Электрические схемы Ford Fusion ›››

Схема 2а. Система управления двигателем

1 — монтажный блок предохранителей в моторном отсеке; 2 — монтажный блок реле и предохранителей за вещевым ящиком; 3 — реле электронного блока управления двигателем; 4, 7 — электронный блок управления двигателем; 5 — управляющий датчик концентрации кислорода; 6 — диагностический датчик концентрации кислорода

Схема 2б. Система управления двигателем

1 — выключатель (замок) зажигания; 2 — монтажный блок реле и предохранителей за вещевым ящиком; 3 — реле топливного насоса; 4 — аварийный выключатель подачи топлива; 5 — катушка зажигания; 6 — комбинация приборов; 7 — электронный блок управления двигателем; 8 — модуль топливного насоса

Схема 2в. Система управления двигателем

1 — монтажный блок реле и предохранителей за вещевым ящиком; 2 — дополнительный стоп-сигнал; 3 — электронный блок управления двигателем; 4 — датчик положения педали тормоза; 5 — датчик положения коленчатого вала; 6 — датчик давления рабочей жидкости в системе гидроусилителя рулевого управления; 7 — датчик положения распределительного вала; 8 — датчик положения педали сцепления

Схема 2г. Система управления двигателем

1, 6 — электронный блок управления двигателем; 2 — монтажный блок реле и предохранителей за вещевым ящиком; 3 — датчик абсолютного давления во впускной трубе; 4 — датчик частоты вращения колеса; 5 — электромагнитный клапан продувки адсорбера; 7 — модуль управления дроссельной заслонкой

Схема 2д. Система управления двигателем

1 — аудиомагнитола; 2 — модуль аудиосистемы и системы навигации; 3 — датчик температуры охлаждающей жидкости; 4 — датчик детонации; 5 — электронный блок управления иммобилизатора; 6, 8 — электронный блок управления двигателем; 7 — датчик положения педали акселератора

Схема 2е. Система управления двигателем

1 — монтажный блок реле и предохранителей за вещевым ящиком; 2 — блок реле в моторном отсеке; 3 — реле отключения муфты компрессора кондиционера при полном открытии дроссельной заслонки; 4, 10 — электронный блок управления двигателем; 5 — муфта компрессора кондиционера; 6 — диод муфты компрессора кондиционера; 7 — датчик высокого давления компрессора кондиционера; 8 — датчик низкого давления компрессора кондиционера; 9 — модуль отопителя

ЭБУ Ford Fusion как отсоединить от колодки

Автоматическое включение света фар на Ford Fusion

Система управления двигателем: обзор ЭБУ.

Шланги и патрубки на двигателе Ford Fusion

Принцип работы системы охлаждения двигателя (на примере Ford Fusion)

Основные принципы чтения электрических схем в авто.

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iпослед. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Итак, характеристики ШД будут такими:

ПараметрЗначение
Iбиполяр.= 0.707 * Iуниполяр.
Сопротивление обмотки, ОмRбиполяр. = 2 * Rуниполяр.
Индуктивность обмотки, мГнLбиполяр. = Lуниполяр.
Крутящий момент, кг×смTбиполяр. = 1.4 * Tуниполяр.

Биполярное параллельное подключение шагового двигателя (схема электрическая)

Реостатный пуск асинхронного двигателя с кз ротором.

Если невозможно запустить АД с кз ротором в стандартном режиме, используют запуск при сниженном напряжении. С этой целью в цепь статора добавляют сопротивление, реостат или используют автотрансформатор. Автоматический выключатель QF срабатывает и на управляющую и силовую цепь поступает напряжение. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В то же время питание поступает и на реле времени КТ.

Рисунок 2 — Схема асинхронного двигателя с симметричными сопротивлениями (реостатный пуск)

Через определенный временной интервал, задаваемый реле КТ, происходит замыкание контакта КТ. В итоге пускатель КМ2 шунтирует (закорачивает) сопротивление статора. Процедура запуска электродвигателя завершается. Для его выключения необходимо нажать клавишу SB2 и выключить автомат QF.

Н-мост и схема работы для управления двигателями

В различных электронных схемах часто возникает необходимость менять полярность напряжения, прикладываемого к нагрузке, в процессе работы. Схемотехника таких устройств реализуется с помощью ключевых элементов. Ключи могут быть выполнены на переключателях, электромагнитных реле или полупроводниковых приборах. Н-мост на транзисторах позволяет с помощью управляющих сигналов переключать полярность напряжения поступающего на исполнительное устройство.

Что такое Н-мост

В различных электронных игрушках, некоторых бытовых приборах и робототехнике используются коллекторные электродвигатели постоянного тока, а также двухполярные шаговые двигатели. Часто для выполнения какого-либо алгоритма нужно с помощью электрического сигнала быстро поменять полярность питающего напряжения с тем, чтобы двигатель технического устройства стал вращаться в противоположную сторону. Так робот-пылесос, наткнувшись на стену, мгновенно включает реверс и задним ходом отъезжает от препятствия. Такой режим реализуется с помощью Н-моста. Схема Н-моста позволяет так же изменять скорость вращения электродвигателя. Для этого на один из двух ключей подаются импульсы от широтно-импульсного модулятора (ШИМ).

Схемой управления режимами двигателя является h-мост. Это несложная электронная схема, которая может быть выполнена на следующих элементах:

  • Биполярные транзисторы
  • Полевые транзисторы
  • Интегральные микросхемы

Основным элементом схемы является электронный ключ. Принципиальная схема моста напоминает латинскую букву «Н», отсюда название устройства. В схему входят 4 ключа расположенных попарно, слева и справа, а между ними включена нагрузка.

H-мост

На схеме видно, что переключатели должны включаться попарно и по диагонали. Когда включен 1 и 4 ключ, электродвигатель вращается по часовой стрелке. 2 и 3 ключи обеспечивают работу двигателя в противоположном направлении. При включении двух ключей по вертикали слева или справа произойдёт короткое замыкание. Каждая пара по горизонтали закорачивает обмотки двигателя и вращения не произойдёт. На следующем рисунке проиллюстрировано, что происходит, когда мы меняем положение переключателей:

Схема работы H-моста

Если мы заменем в схеме переключатели на транзисторы, то получим такой вот (крайне упрощенный) вариант:

H-мост

Для того чтобы исключить возможное короткое замыкание h-мост на транзисторах дополняется входной логикой, которая исключает появление короткого замыкания. В современных электронных устройствах мостовые схемы изменения полярности дополняются устройствами, обеспечивающими плавное и медленное торможение перед включением реверсного режима.

Н-мост на биполярных транзисторах

Транзисторы в ключевых схемах работают по принципу вентилей в режиме «открыт-закрыт», поэтому большая мощность на коллекторах не рассеивается, и тип применяемых транзисторов определяется, в основном, питающим напряжением. Несложный h-мост на биполярных транзисторах можно собрать самостоятельно на кремниевых полупроводниковых приборах разной проводимости.

H-мост на биполярных транзисторах

Такое устройство позволяет управлять электродвигателем постоянного тока небольшой мощности. Если использовать транзисторы КТ816 и КТ817 с индексом А, то напряжение питания не должно превышать 25 В. Аналогичные транзисторы с индексами Б или Г допускают работу с напряжением до 45 В и током не превышающим 3 А. Для корректной работы схемы транзисторы должны быть установлены на радиаторы. Диоды обеспечивают защиту мощных транзисторов от обратного тока. В качестве защитных диодов можно использовать КД105 или любые другие, рассчитанные на соответствующий ток.

Недостатком такой схемы является то, что нельзя подавать на оба входа высокий потенциал, так как открытие обоих ключей одновременно вызовет короткое замыкание источника питания. Для исключения этого в интегральных мостовых схемах предусматривается входная логика, полностью исключающая некорректную комбинацию входных сигналов.

Схему моста можно изменить, поставив в неё более мощные транзисторы.

Н-мост на полевых транзисторах

Кроме использования биполярных транзисторов в мостовых схемах управления питанием, можно использовать полевые (MOSFET) транзисторы. При выборе полупроводниковых элементов обычно учитывается напряжение, ток нагрузки и частота переключения ключей, при использовании широтно-импульсной модуляции. Когда полевой транзистор работает в ключевом режиме, у него присутствуют только два состояния – открыт и закрыт. Когда ключ открыт, то сопротивление канала ничтожно мало и соответствует резистору очень маленького номинала. При подборе полевых транзисторов для ключевых схем следует обращать внимание на этот параметр. Чем больше это значение, тем больше энергии теряется на транзисторе. При минимальном сопротивлении канала выше КПД моста и лучше его температурные характеристики.

Дополнительным негативным фактором является зависимость сопротивления канала от температуры. С увеличением температуры этот параметр заметно растёт, поэтому при использовании мощных полевых транзисторов следует предусмотреть соответствующие радиаторы или активные схемы охлаждения. Поскольку подбор полевых транзисторов для моста связан с определёнными сложностями, гораздо лучше использовать интегральные сборки. В каждой находится комплементарная пара из двух мощных MOSFET транзисторов, один из которых с P каналом, а другой с N каналом. Внутри корпуса также установлены демпферные диоды, предназначенные для защиты транзисторов.

В конструкции использованы следующие элементы:

  • VT 1,2 – IRF7307
  • DD 1 – CD4093
  • R 1=R 2= 100 ком

Интегральные микросхемы с Н-мостом

В ключах Н-моста желательно использовать комплементарные пары транзисторов разной проводимости, но с одинаковыми характеристиками. Этому условию в полной мере отвечают интегральные микросхемы, включающие в себя один, два или более h-мостов. Такие устройства широко применяются в электронных игрушках и робототехнике. Одной из самых простых и доступных микросхем является L293D. Она содержит два h-моста, которые позволяют управлять двумя электродвигателями и допускают управление от ШИМ контроллера. Микросхема имеет следующие характеристики:

  • Питание – + 5 В
  • Напряжение питания электромотора – + 4,5-36 В
  • Выходной номинальный ток – 500 мА
  • Ток в импульсе – 1,2 А

Микросхема L298 так же имеет в своём составе два h-моста, но гораздо большей мощности. Максимальное напряжение питания, подаваемое на двигатель, может достигать + 46 В, а максимальный ток соответствует 4,0 А. Н-мост TB6612FNG допускает подключение двух коллекторных двигателей или одного шагового. Ключи выполнены на MOSFET транзисторах и имеют защиту по превышению температуры, перенапряжению и короткому замыканию. Номинальный рабочий ток равен 1,2 А, а максимальный пиковый – 3,2 А. Максимальная частота широтно-импульсной модуляции не должна превышать 100 кГц.

Мостовые устройства управления электродвигателями часто называют драйверами. Драйверами так же называют микросхемы, только обеспечивающие управление мощными ключевыми каскадами. Так в схеме управления мощным электродвигателем используется драйвер HIP4082. Он обеспечивает управление ключами, собранными на дискретных элементах. В них используются MOSFET транзисторы IRF1405 с N-каналами. Компания Texas Instruments выпускает большое количество интегральных драйверов предназначенных для управления электродвигателями разных конструкций. К ним относятся:

  • Драйверы для шаговых двигателей – DRV8832, DRV8812, DRV8711
  • Драйверы для коллекторных двигателей – DRV8816, DRV8848, DRV8412/32
  • Драйверы для бесколлекторных двигателей – DRV10963, DRV11873, DRV8332

На рынке имеется большой выбор интегральных мостовых схем для управления любыми электродвигателями. Сделать конструкцию можно и самостоятельно, применив качественные дискретные элементы.

Схема управления двигателем

На рис. 1.3 приведена схема управления двигателем постоянного тока с независимым возбуждением (обмотка возбуждения ОВ включена на полное напряжение Uном).

При нажатии пусковой кнопки П срабатывает контактор ЛК и якорь двигателя Я оказывается под током, значение которого на некоторое время ограничивает резистор R1. При отпускании кнопки П схема продолжает работать, так как кнопка зашунтирована вспомогательным контактом ВК1, механически связанным с контактором ЛК. В необходимый момент времени замыкаются контакты РВ задающего органа и включается контактор КУ, контакты которого шунтируют резистор R1. Момент замыкания контактов РВ может задаваться различными способами, например, в функции времени, когда специальное реле времени РВ включает контактор КУ через определенную выдержку времени после срабатывания контактора ЛК. Таким образом, двигатель начинает работать в нормальном режиме.

Рис. 1.3. Схема управления двигателем постоянного тока

Для отключения двигателя необходимо нажать кнопку С. При этом контактор ЛК возвращается в исходное состояние, а схема управления автоматически осуществляет динамическое торможение двигателя. За счет наведенной в якоре ЭДС срабатывает реле напряжения РН (контакты ВК2 относятся к контактору ЛК и в это время они замыкаются). Напряжение сети через контакты РН подается на обмотку контактора ТК, он срабатывает, и его контакты ТК включают резистор R2 параллельно обмотке якоря двигателя. Начинается динамическое торможение двигателя. Снижение частоты его вращения вызывает уменьшение ЭДС, наводимой в обмотке якоря. Когда напряжение на обмотке якоря становится равным напряжению отпускания реле РН, оно разрывает своими контактами цепь обмотки контактора ТК, который при этом отключается, и двигатель окончательно затормаживается под действием статического момента.

Реле напряжения срабатывает при заданном значении напряжения срабатывания, а возвращается в отключенное состояние при определенном напряжении отпускания (возврата). В реле предусмотрена возможность регулирования той или другой величины напряжения в определенных пределах.

В схемах управления часто применяют так называемые промежуточные реле. Эти реле обычно имеют одну оперативную обмотку и много пар контактов. На обмотку подается единичный сигнал через один контакт, не зависимый от промежуточного реле. В то же время при срабатывании этого реле сравнительно большое количество его контактов способно коммутировать число цепей, равное числу пар контактов, то есть подавать в цепи управления значительно большее количество сигналов по сравнению с начальным, поданным на обмотку реле. Контакты этих реле могут пропускать существенно большие токи по сравнению с током, проходящим через обмотку.

2. Описание работы исследуемых схем.

3. Описание аварийных режимов работы.

4. Выводы о проделанной работе.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. При каких условиях срабатывают токовые реле?

2. Почему по мере разгона двигателя ток в роторе уменьшается?

3. Каково назначение пусковых резисторов?

4. Как перевести электрическую машину постоянного тока из двигательного режима в режим динамического торможения?

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Епифанов, А. П. Электропривод [Электронный ресурс] : учебник для студентов высших учебных заведений / А. П. Епифанов, Л. М. Малайчук, А. Г. Гущинский ; под ред. А. П. Епифанова. – СПб. : Лань, 2012. – 400 с.

2. Епифанов, А. П. Основы электропривода: Учебное пособие. – СПб.: Издательство «Лань», 2008. – 192 c.

3. Ильинский, Н. Ф. Общий курс электропривода: учеб. для вузов / Н. Ф. Ильинский, В. Ф. Козаченко. – М.: Энергоатомиздат, 1992. – 544 с.

Лабораторная работа №2

ИССЛЕДОВАНИЕ ТИРИСТОРНЫХ
Коммутационных аппаратов

ЦЕЛЬ РАБОТЫ: Исследование работы схем тиристорных аппаратов: пускателя серии ПТ, станции управления типа БЛЭ, станции управления серии ПТУ, регулятора мощности, выключателя переменного тока, трехфазного пускателя.

Статьи к прочтению:

  • Схема управления и защиты асинхронного двигателя
  • Схемная реализация элементарных логических операций. типовые логические узлы

Схема управления двигателем с двух и трех мест

Похожие статьи:

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального…

На рис. 1.2 показана схема пуска асинхронного двигателя с контактными кольцами в функции тока ротора. Пуск схемы осуществляется нажатием кнопки П,…

Схема управления магнитным пускателем с двух и трех мест

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

После публикации статьи про схему подключения магнитного пускателя мне очень часто стали приходить вопросы о том, как осуществить управление двигателем с двух или трех мест.

И не удивительно, ведь такая необходимость может возникнуть довольно часто, например, при управлении двигателем из двух разных помещений или в одном большом помещении, но с противоположных сторон или на разных уровнях высот, и т.п.

Вот я и решил написать об этом отдельную статью, чтобы вновь обратившимся с подобным вопросом каждый раз не объяснять, что и куда необходимо подключить, а просто давать ссылочку на эту статью, где все подробно разъяснено.

Итак, у нас имеется трехфазный электродвигатель, управляемый через контактор с помощью одного кнопочного поста. Как собрать подобную схему я очень подробно и досконально объяснял в статье про схему подключения магнитного пускателя — переходите по ссылочке и знакомьтесь.

Вот схема подключения магнитного пускателя через один кнопочный пост для приведенного выше примера:

Вот монтажный вариант этой схемы.

Будьте внимательны! Если у Вас линейное (межфазное) напряжение трехфазной цепи составляет не 220 (В), как в моем примере, а 380 (В), то схема будет выглядеть аналогично, только катушка пускателя должна быть на 380 (В), иначе она сгорит.

Также цепи управления можно подключить не с двух фаз, а с одной, т.е. использовать какую-нибудь одну фазу и ноль. В таком случае катушка контактора должна иметь номинал 220 (В).

Схема управления двигателем с двух мест

Я немного изменил предыдущую схему, установив для силовых цепей и цепей управления отдельные автоматические выключатели.

Для моего примера с маломощным двигателем это не было критической ошибкой, но если у Вас двигатель гораздо бОльшей мощности, то такой вариант будет не рациональным и в некоторых случаях даже не осуществимым, т.к. сечение проводов для цепей управления в таком случае должно быть равно сечению проводов силовых цепей.

Предположим, что силовые цепи и цепи управления подключены к одному автомату с номинальным током 32 (А). В таком случае они должны быть одного сечения, т.е. не менее 6 кв.мм по меди. А какой смысл для цепей управления использовать такое сечение?! Токи потребления там совсем мизерные (катушка, сигнальные лампы и т.п.).

А если двигатель будет защищен автоматом с номинальным током 100 (А)? Представьте тогда, какие сечения проводов необходимо будет применить для цепей управления. Да они просто напросто не влезут под клеммы катушек, кнопок, ламп и прочих устройств низковольтной автоматики.

Поэтому, гораздо правильнее будет — это установить отдельный автомат для цепей управления, например, 10 (А) и применить для монтажа цепей управления провода сечением не менее 1,5 кв.мм.

Теперь нам нужно в эту схему добавить еще один кнопочный пост управления. Возьму для примера пост ПКЕ 212-2У3 с двумя кнопками.

Как видите, в этом посту все кнопки имеют черный цвет. Я все же рекомендую для управления применять кнопочные посты, в которых одна из кнопок выделена красным цветом. Ей и присваивать обозначение «Стоп». Вот пример такого же поста ПКЕ 212-2У3, только с красной и черной кнопками. Согласитесь, что выглядит гораздо нагляднее.

Вся суть изменения схемы сводится к тому, что кнопки «Стоп» обоих кнопочных постов нам необходимо подключить последовательно, а кнопки «Пуск» («Вперед») параллельно.

Назовем кнопки у поста №1 «Пуск-1» и «Стоп-1», а у поста №2 — «Пуск-2» и «Стоп-2».

Теперь с клеммы (3) нормально-закрытого контакта кнопки «Стоп-1» (пост №1) делаем перемычку на клемму (4) нормально-закрытого контакта кнопки «Стоп-2» (пост №2).

Затем с клеммы (3) нормально-закрытого контакта кнопки «Стоп-2» (пост №2) делаем две перемычки. Одну перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-1» (пост №1).

А вторую перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-2» (пост №2).

И теперь осталось сделать еще одну перемычку с клеммы (1) нормально-открытого контакта кнопки «Пуск-2» (пост №2) на клемму (1) нормально-открытого контакта кнопки «Пуск-1» (пост №1). Таким образом мы подключили кнопки «Пуск-1» и «Пуск-2» параллельно друг другу.

Вот собранная схема и ее монтажный вариант.

Теперь управлять катушкой контактора, а также самим двигателем можно с любого ближайшего для Вас поста. Например, включить двигатель можно с поста №1, а отключить с поста №2, и наоборот.

О том, как собрать схему управления двигателем с двух мест и принцип ее работы предлагаю посмотреть в моем видеоролике:

Ошибки, которые могут возникнуть при подключении

Если перепутать, и подключить кнопки «Стоп» не последовательно друг с другом, а параллельно, то запустить двигатель можно будет с любого поста, а вот остановить его уже на вряд ли, т.к. в этом случае необходимо будет нажимать сразу обе кнопки «Стоп».

И наоборот, если кнопки «Стоп» собрать правильно (последовательно), а кнопки «Пуск» последовательно, то двигатель запустить не получится, т.к. в этом случае для запуска нужно будет нажимать одновременно две кнопки «Пуск».

Схема управления двигателем с трех мест

Если же Вам необходимо управлять двигателем с трех мест, то в схему добавится еще один кнопочный пост. А далее все аналогично: все три кнопки «Стоп» необходимо подключить последовательно, а все три кнопки «Пуск» параллельно друг другу.

Монтажный вариант схемы.

Если же Вам необходимо осуществлять реверсивный пуск асинхронного двигателя с нескольких мест, то смысл остается прежним, только в схему добавится, помимо кнопок «Стоп» и «Пуск» («Вперед»), еще одна кнопка «Назад», которую необходимо будет подключить параллельно кнопке «Назад» другого поста управления.

Рекомендую: на постах управления, помимо кнопок, выполнять световую индикацию наличия напряжения цепей управления («Сеть») и состояние двигателя («Движение вперед» и «Движение назад»), например, с помощью тех же светодиодных ламп СКЛ, про преимущества и недостатки которых я не так давно Вам подробно рассказывал. Примерно вот так это будет выглядеть. Согласитесь, что смотрится наглядно и интуитивно понятно, особенно когда двигатель и контактор находятся далеко от постов управления.

Как Вы уже догадались, количество кнопочных постов не ограничивается двумя или тремя, и управление двигателем можно осуществлять и с бОльшего числа мест — это все зависит от конкретных требований и условий рабочего места.

Кстати, вместо двигателя можно подключить любую нагрузку, например, освещение, но об этом я расскажу Вам в следующих своих статьях.

голоса
Рейтинг статьи
Читать еще:  Бмв е39 на холодную троит и глохнет двигатель
Ссылка на основную публикацию
Adblock
detector