Электродинамическое торможение асинхронного двигателя схема - Авто журнал kupim-avto57.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электродинамическое торможение асинхронного двигателя схема

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Асинхронный двигатель и его работа

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Схемы конденсаторно-динамического торможения

Схемы конденсаторно-динамнческого торможения магнитным торможением.

Две основные схемы конденсаторно-динамического торможения (КДТ) показаны на рисунке 2.

В схеме постоянный ток подают в статор после прекращения действия конденсаторного торможения. Эта схема рекомендуется для точной остановки электропривода. Подачу постоянного тока следует производить в функции пути механизма. При сниженной частоте вращения момент динамического торможения значителен, что и обеспечивает быстрое окончательное затормаживание двигателя.

Читать еще:  Электрическая схема двигатель 243

Эффективность такого двухступенчатого торможение видна из следующего примера.

При динамическом торможении двигателя АЛ41-4 (1,7 кВт, 1440 об/мин) с внешним моментом инерции на валу, составляющим 22% момента инерции ротора, время торможения равно 0,6 с, а тормозной путь 11,5 оборота вала.

При совмещении конденсаторного и динамического торможения время и путь торможения сокращаются до 0,16 с и 1,6 оборота вала (емкость конденсаторов была принята равной 3,9 Сном).

В схеме рис. 2,6 осуществляется перекрытие режимов с подачей постоянного тока до окончания процесса конденсаторного торможения. Для управления вторым этапом служит реле напряжения РН.

Конденсаторно-динамическое торможение по схеме рис. 2,6 позволяет снизить время и путь торможения в 4 — 5 раз по сравнению с конденсаторно-динамическим торможением по схеме рис. 1,а. Однако отклонения времени и пути от их сред них значений при последовательном действии режимов конденсаторного и динамического торможения в 2 — 3 раза, меньше, чем в схеме с перекрытием режимов.

Торможение постоянным током

Данный способ торможения асинхронного двигателя является более распространенным и эффективным чем первый способ

перевода в режим генератора. Его суть заключается в том, что на обмотки статора асинхронного двигателя подают постоянное напряжение. При этом обмотки статора двигателя соединяются следующим образом. Когда по обмоткам статора начинает протекать постоянный ток, вокруг статора образуется постоянное не подвижное магнитное поле, которое пересекая вращающуюся обмотку ротора вмести с самим ротором наводит в нем эдс, а в следствии замкнутости этой обмотки по ней протекает ток, создающий магнитное поле ротора. Тормозной момент образуется в результате взаимодействия этих полей.

При таком торможении асинхронного двигателя, тормозной момент достигает больших значений при высокой скорости вращения ротора двигателя, но с уменьшением этой скорости падает и тормозной момент. Тормозной момент также можно регулировать, изменяя значение подаваемого значения постоянного тока на статор или же изменением сопротивления в цепи ротора. Торможение асинхронного двигателя постоянным током также называется — динамическим торможением.

Ссылка на основную публикацию
Adblock
detector