Электрические схемы защита электрических двигателей - Авто журнал kupim-avto57.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические схемы защита электрических двигателей

О предохранителях электрических цепей

В настоящее время основными способами защиты электрических цепей напряжением 380/220 В от токов короткого замыкания и перегрузок является применение плавких предохранителей или автоматических выключателей.

Применение плавких предохранителей обосновано в таких электрических схемах, когда необходимо обеспечить только защиту от токов КЗ и перегрузки при обеспечении высокой отключающей способности (до 120 кА). Такая схема будет значительно дешевле схемы, в которой защиту возлагают исключительно на автоматические выключатели. Для сравнения: комплект из трех предохранителей с номинальным током плавкой вставки 125 А с отключающей способностью 120 кА марки 125NH00B-400 установленных в держателе EBH00O3TS5 фирмы Bussmann более чем в 5 раз дешевле автоматического выключателя с номинальным током расцепителя 125 А и отключающей способностью 36 кА марки SACE TmaxXT1 160 TMD фирмы ABB.

Защитная функция плавких предохранителей основана на термическом воздействии электрического тока на проводник (плавкую вставку). В случае превышения значения тока в защищаемой цепи определенных значений плавкая вставка расплавляется (перегорает) и при этом возникает разрыв электрической цепи.

Как правило, предохранители характеризуются следующими параметрами:

  • номинальным напряжением Uном.пр. , что соответствует максимальному номинальному напряжению цепи, в которой допускается установка конкретного предохранителя;
  • номинальный ток плавкой вставки Iном.вс. , сколь угодно долго протекающий через предохранитель и не вызывающий расплавление плавкой вставки ток;
  • номинальный ток предохранителя Iном.пр., сколь угодно долго протекающий через предохранитель и не вызывающий изменений в его конструкции электрический ток;
  • предельно отключаемый ток предохранителя (ток короткого замыкания) Iпр.откл., наибольший ток, при протекании которого происходит расплавление плавкой вставки предохранителя и гашение электрической дуги без каких-либо повреждений его конструкции.

Примечание: номинальное напряжение постоянного тока, как правило, ниже номинального напряжения переменного тока. Исходя из практики, за значение напряжения постоянного тока может быть принята как минимум половина значения переменного тока. Держатели предохранителей, промаркированные для переменного напряжения, могут также применяться при постоянном напряжении.

Важной характеристикой предохранителя является время-токовая характеристика, описываемая в виде графика, где по одной оси откладывается ток, чаще всего в относительных единицах (за единицу принимается номинальный ток плавкой вставки), а по другой оси — время срабатывания. При этом надо иметь в виду, что характеристика каждого экземпляра предохранителя (даже из одной партии) уникальна, указывается в каталоге на каждый тип предохранителя как «зона разброса характеристик».

Обозначения характеристики (класса) предохранителя:

— первая буква означает диапазон защиты:

  • a — частичный диапазон (только защита от токов короткого замыкания);
  • g — полный диапазон (защита и от токов короткого замыкания, и от перегрузки);

— вторая буква означает тип защищаемого оборудования:

  • G — универсальный предохранитель для защиты различных типов оборудования: кабелей, электродвигателей, трансформаторов;
  • L — защита кабелей и распределительных устройств;
  • B — защита горного оборудования;
  • F — защита маломощных цепей;
  • M — защита цепей электродвигателей и отключающих устройств;
  • R — защита полупроводников;
  • S — быстрая реакция при коротком замыкании и среднее время реакции при перегрузке;
  • Tr — защита трансформаторов.

Примеры характеристик ножевых предохранителей с характеристикой gL/gG:

Особенности конструкции быстродействующих предохранителей

Полупроводники имеют совсем небольшую теплоемкость и жесткую верхнюю границу температуры запирающего слоя, около 125°С. То есть, при защите термочувствительных полупроводников необходимо согласовать характеристики плавкого металлического элемента с допустимой тепловой перегрузкой полупроводника. Таким образом, эффективная защита должна отключать очень быстро все токи, превышающие номинальный ток полупроводника. Ради достижения этой цели были разработаны быстродействующие предохранители с крайне малым сечением сужений плавкой вставки.

Плавкая вставка предохранителя защиты полупроводниковых приборов

Материалом плавкой вставки служит стойкое к окислению и хорошо проводящее тепло и электрический ток серебро. За счет высокой теплопроводности тепловая энергия, выделяемая в местах сужений при протекании номинального тока, быстро отводится на сплошные участки плавкой вставки и расплавления токоведущих суженых участков не происходит. При больших токах выделяемой тепловой энергии достаточно, чтобы быстро расплавить сужения плавкой вставки. Утилизация тепловой энергии происходит в наполнителе предохранителя и, соответственно, на его корпусе. Корпус предохранителя изготавливается из корундовой керамики, стойкой к изменениям температуры.

Выбирая предохранители необходимо учитывать следующие факторы:

  • род тока (переменный –AC, постоянный – DС);
  • номинальное напряжение;
  • номинальный ток, протекающий в цепи защищаемой предохранителем;
  • возможный ток короткого замыкания;
  • характер защищаемого объекта (двигатель, кабельная линия, полупроводниковый прибор и т.д.) или время-токовая характеристика (класс предохранителя);
  • конструктивные особенности предохранителей;
  • конструктивные особенности держателей предохранителей.

Цилиндрические предохранители (плавкие вставки)

Краткие технические характеристики
СтандартIEC 60269
Напряжение400, 500, 690 VAC
Номинальный токот 0.5 до 125 A
Ток короткого замыканияот 20 до 120 kA
ХарактеристикиgG, aM
Размеры (диаметр, длина),мм8 x 31,
10 x 38,
14 x 51,
22 x 58

Держатели цилиндрических предохранителей

Подобные держатели могут выполнять две функции:

  • функцию защиты от токов к.з. и перегрузки;
  • функцию разъединителя электрической цепи. Iпл.вст. QF6 в 1,6 раза, Iпл.вст. QF6 > Iпл.вст. QF5.). Предохранитель 80NHG000B-400, Bussmann. Размер предохранителя — 000. В качестве держателя выбран разъединитель- предохранитель EBH000O3TS5 (Bussmann).

5. Защита кабеля 2 к шкафу ШСУ1.

Для защиты пятижильного кабеля 5х25 мм² , проложенного в земле выбран плавкий предохранитель QF3: характеристика gG, Iном.125 A (условия выбора: 1) Iпл.вст. Iпл.вст. QF8 в 1,6 раза). Предохранитель 125NHG00B-400, Bussmann. Размер предохранителя — 00. В качестве держателя выбран разъединитель- предохранитель EBH000O3TS5 (Bussmann).

6. Защита кабеля 3 к шкафу ШСУ2.

Для защиты пятижильного кабеля 5х16 мм² , проложенного в земле выбран плавкий предохранитель QF4: характеристика gG, Iном.100A (условия выбора: 1) Iпл.вст. Iпл.вст. QF7 в 1,6 раза). Предохранитель 100NHG000B-400, Bussmann. Размер предохранителя — 000. В качестве держателя выбран разъединитель- предохранитель EBH000O3TS5 (Bussmann).

7. Защита ввода РУ 0,4кВ

Для защиты выбран плавкий предохранитель QF2: характеристика gG, Iном.200 A (условия выбора: Iпл.вст. QF2 > Iпл.вст. QF3 в 1,6 раза). Предохранитель 200NHG1B-400, Bussmann. Размер предохранителя -1. В качестве держателя выбран разъединитель- предохранитель EBH1O3TS8 (Bussmann).

8. Защита кабеля 1 к РУ 0,4кВ.

Для защиты четырёхжильного кабеля 4х95 мм², проложенного в земле выбран плавкий предохранитель QF1: характеристика gG, Iном.315A (условия выбора: 1) Iпл.вст. Iпл.вст. QF2 в 1,6 раза). Предохранитель 315NHG03B-400, Bussmann. Размер предохранителя — 03. В качестве держателя выбран разъединитель- предохранитель EBH3O3TM2 (Bussmann).

ЗАЩИТА ОТ АТМОСФЕРНЫХ ПЕРЕНАПРЯЖЕНИЙ

Перенапряжения представляют большую опасность для электрического оборудования электровоза: они могут вызвать пробой изоляции. Различают перенапряжения коммутационные и атмосферные.
Коммутационные перенапряжения возникают вследствие выключения и включения электрических цепей под нагрузкой. Быстро изменяющиеся магнитные потоки, вызванные изменением токов в переключаемых цепях, наводят иногда опасные напряжения в обмотках аппаратов и машин.
Атмосферные перенапряжения возникают при грозах ; особенно велики они, когда происходит грозовой разряд вблизи электрифицированной дороги или при прямых ударах молнии в контактную сеть . После удара молнии в контактной сети образуются быстро перемещающиеся (со скоростью света) вдоль нее волны перенапряжения. Обычная защита при столь быстро протекающих процессах не успевает сработать. Поэтому на электровозах, тяговых подстанциях и контактной сети устанавливают разрядники. Они первыми принимают на себя удар волны перенапряжения и отводят ее в землю.
На электровозах устанавливают вилитовые разрядники. При повышении напряжения на его зажимах сверх установленного воздушные промежутки, называемые искровыми, пробиваются, и контактная сеть кратковременно соединяется с землей. Искровые промежутки включены последовательно с вилитовыми дисками, сопротивление которых ограничивает ток, проходящий из контактной сети в землю. Для быстрого гашения электрической дуги, возникающей в искровых промежутках, необходимо, чтобы при увеличении приложенного напряжения уменьшалось сопротивление дисков. Этому требованию отвечает вилит, обладающий нелинейным сопротивлением. Волна перенапряжения быстро спадает, сопротивление дисков растет, следовательно, ток уменьшается и электрическая дуга гаснет. Такие разрядники называют вилитовыми. Их искровые промежутки шунтированы высокоомными резисторами, обеспечивающими равномерное распределение напряжения между искровыми промежутками.
Разрядники электровозов постоянного и переменного тока различаются числом искровых промежутков (соответственно два и семь последовательно соединенных комплектов по четыре промежутка в каждом, т. е. всего 8 и 28 искровых промежутков). Это определяет различное конструктивное выполнение разрядников.
Разрядники защищают от перенапряжений также цепи переменного тока, питающие выпрямители электровозов.

ЗАЩИТА ОТ РАДИОПОМЕХ

Помехи радиосвязи на электрифицированных железных дорогах возникают вследствие недостаточно плотного контакта между токоприемником и контактным проводом, плохой коммутации электрических двигателей постоянного тока. В последнем случае происходит искрение щеток, возникает и гаснет дуга в выключателях и контакторах, что вызывает появление токов высокой частоты. Эти токи генерируют электромагнитные колебания, создавая радиопомехи, особенно в диапазоне длинных и средних волн.
По характеру воздействия на приемники различают гладкие (непрерывные) помехи и импульсные.
Снижают уровень помех, прежде всего поддерживая в исправности устройства электроснабжения и локомотивы. Другой путь снижения его — увеличение сопротивления токам высокой частоты. Для этого после токоприемника локомотива включают фильтр, состоящий из дросселя Др и конденсатора С. Конденсатор С соединен одной обкладкой с дросселем, а другой — с кузовом электровоза и, следовательно, с землей. Токи высокой частоты, значительно сниженные вследствие большого индуктивного сопротивления дросселя, через конденсатор, обладающий малым емкостным сопротивлением, отводятся в землю.
Дроссель и конденсатор образуют контур, который настраивают, подбирая индуктивное и емкостное сопротивления таким образом, чтобы в землю отводились гармонические составляющие тех частот, при которых помехи наибольшие.

ЗАЩИТА ОТ БОКСОВАНИЯ

Электровозы постоянного тока с последовательным возбуждением тяговых двигателей, как уже отмечалось, имеют повышенную склонность к боксованию. Созданы и разрабатываются различные способы борьбы с боксованием, в первую очередь для электровозов постоянного тока.
Развившееся боксование часто не прекращается при подсыпке песка, применение которого увеличивает коэффициент сцепления. Прекратить боксование можно, уменьшив силу тяги, развиваемую тяговыми двигателями, так, чтобы она стала ниже силы трения скольжения бандажей по рельсам. Для этого необходимо перейти на низшие ступени регулирования. Но тогда снижается сила тяги двигателей всех колесных пар, а не только боксующих, т. е. прекращение боксования таким способом обычно сопровождается снижением скорости. Поэтому для прекращения боксования целесообразно предусмотреть автоматическое снижение силы тяги, а следовательно, и момента только у боксующего двигателя. На электровозах постоянного тока уменьшить момент, развиваемый двигателем, можно, введя в его цепь секцию пусковых реостатов. При параллельном соединении двигателей можно также перейти со ступеней ослабленного возбуждения на полное, что приводит к уменьшению тока, потребляемого двигателем.
При последовательном соединении нескольких двигателей (не менее шести) силу тяги двигателя можно снизить, ослабляя его возбуждение, поскольку общая э. д. с. всех двигателей уменьшится незначительно и соответственно не намного возрастет ток, потребляемый двигателями этой цепи. Зато в результате значительного уменьшения магнитного потока боксующей колесной пары резко уменьшится сила тяги ее двигателя. Все эти мероприятия, применяемые в зависимости от схемы соединения двигателей в момент начала боксования, осуществлены на электровозе ВЛ11 в сочетании с автоматической подсыпкой песка под первые по ходу движения колеса каждой тележки и подачей светового сигнала на пульт машиниста. Сигналы к защите от боксования поступают со специального бесконтактного полупроводникового датчика — одного на каждые два последовательно соединенных двигателя. Датчик сравнивает э. д. с. этих двигателей и в случае необходимости выдает соответствующий сигнал.
Тот же принцип защиты от боксова­ния используется на электровозах ВЛ10. На этих электровозах последних выпусков имеются датчики того же типа, что и на ВЛ11.

Рис. 101. Схема включения реле боксования (а),
перехода на ослабленное или полное возбуждение (б)
и схема, поясняющая действие уравнительного контактора (в)

Реле боксования РБ включено в одну из диагоналей моста VD1—VD4 (рис. 101, а). Другая диагональ подключена к точкам А и Б. При нормальной работе э. д. с. тяговых двигателей I и II равны.. Если началось боксование, допустим, колесной пары, на оси которой расположен двигатель 1, э. д. с. Е1 станет больше Е2,и ток от точки Б пойдет через диод VD3, катушку реле РБ, диод VD4 к точке А. Реле боксования сработает и своим блок-контактом замкнет цепь светового сигнала и цепь включения подачи песка.
В случае боксования колесной пары с двигателем II ток пойдет через диод VD1, обмотку реле РБ, диод VD2. Мостовая схема обеспечивает в том и другом случае прохождение тока по катушке реле в одном и том же направлении. Поэтому реле не размагничивается и не изменяется его уставка. Резисторы R ограничивают ток, проходящий через обмотку реле.
Защита осуществляет перевод боксующего тягового двигателя на ослабленное возбуждение при последовательном соединении двигателей электровоза и с ослабленного возбуждения на полное при последовательно-параллельном и параллельном соединении двигателей. Кроме того, при двух последних схемах соединения двигателей включается уравнительный контактор К (рис. 101, в), что приводит к повышению жесткости характеристик. При замыкании контактора К увеличивается ток возбуждения и уменьшается ток якоря боксующего двигателя. На последовательно-параллельном соединении в цепь, где находится боксующий двигатель, дополнительно вводится часть пусковых резисторов.
Боксование также может возникнуть и вследствие перераспределения вертикальных нагрузок от колесных пар на рельсы. Перераспределение их вызывается моментом, создаваемым касательной силой тяги FK и силой сопротивления движению состава W, приложенными на разной высоте (рис. 102).

Рис. 102. Схема расположения противоразгрузочных устройств электровоза

Этот момент стремится приподнять передние по ходу локомотива тележки и передние колесные пары каждой тележки, в результате чего вертикальные нагрузки на передние тележки каждой секции уменьшаются, а на задние второй тележки — увеличиваются. Это может вызвать боксование передних колесных пар.
Для того чтобы на все тележки и колесные пары действовали равные нагрузки, на электровозах ВЛ80т, ВЛ80с, ВЛ80р, ВЛ10, ВЛ11 установлены противоразгрузочные (догружающие) пневматические устройства1. Как только электровоз начинает двигаться с составом, сжатый воздух подводится к передним по ходу электровоза цилиндрам каждой тележки, и поршни этих цилиндров через штоки с роликами давят на раму тележек, как бы догружая их.
Расположение на электровозе цилиндром противоразгрузочных устройств на рис. 102 показано условно. В действительности цилиндры установлены на тележках горизонтально и передают давление на них через рычаги.
В зависимости от силы тяги специальный регулятор изменяет давление сжатого воздуха. Регулирование давления осуществляется воздействием реле давления РД1 и РД2, включенных в цепь тяговых двигателей. Чем больше ток, проходящий через тяговые двигатели и обмотки реле давления, тем больше сила тяги и тем под большим давлением подается сжатый воздух в противоразгрузочные цилиндры. В зависимости от направления движения открывается клапан К1 или К2; катушки клапанов включены в цепь тяговых дви­гателей электровоза.

РЕЛЕ РЕКУПЕРАЦИИ

В момент перехода на рекуператив­ное торможение, например, двух тяговых двигателей, соединенных последовательно, суммарная электродвижущая сила должна быть близка к напряжению контактной сети . Если это условие не будет выполнено, то, как уже отмечалось, через тяговые двигатели пойдет недопустимо большой ток. Чтобы этого избежать, на восьмиосных электровозах используют реле рекуперации, которые автоматически присоединяют тяговые двигатели к контактной сети, когда их суммарная эдс равна еапряжению контактной сети.
Реле РР включают таким образом (рис. 103), что если суммарная э. д. с. тяговых двигателей значительно отличается от напряжения контактной сети, через его обмотку проходит ток и якорь реле притянут к сердечнику. Контакт 1, введенный в цепь тяговых двигателей, разомкнут. Машинист, перемещая тормозную рукоятку контроллера, изменяет э. д. с. тяговых двигателей. Когда разница между нею и напряжением контактной сети составит 80—100 В, якорь реле отпадет, контакт 1 замкнется. Резистор ограничивает ток в цепи реле.

Рис. 103. Схема включения реле

РЕЛЕ ПОВЫШЕННОГО И НИЗКОГО НАПРЯЖЕНИЯ

Напряжение в контактной сети изменяется в довольно широких пределах. Поэтому электрическое оборудование электровозов постоянного тока рассчитывают на работу при максимальном напряжении 4000 В. В процессе рекуперативного торможения на токоприемнике напряжение может превысить это значение и вызвать пробой изоляции либо круговой огонь на коллекторах тяговых двигателей или вспомогательных машин. Чтобы предотвратить это, на электровозах устанавливают реле повышенного напряжения РПН. Включают его по схеме, показанной на рис. 103. При напряжении более 4000 В якорь реле РПН притягивается, его контакты замыкают цепь светового сиг­нала на пульте машиниста и производят переключения, в результате которых уменьшается ток возбуждения генератора преобразователя.
Если электровоз работал в тяговом режиме и в контактной сети по каким-либо причинам напряжение превысило 4000 В, то реле отключает цепи ослабления возбуждения тяговых двигателей.
Наблюдаются и кратковременные понижения напряжения в контактной сети, например, при непродолжительном отключении ближайшей к электровозу тяговой подстанции. Контактная сеть в это время питается от далеко расположенных подстанций. Резкое повышение (бросок) напряжения при включении подстанции может вызвать опасные для электровоза броски тока и силы тяги. Чтобы предупредить машиниста о понижении напряжения, на электровозах устанавливают реле пониженного напряжения РНН (см. рис. 103), которые при определенном напряжении включают световой сигнал. Машинист в этом случае принимает необходимые меры, например включает в цепь тяговых двигателей пусковые реостаты или отключает их.
Кроме рассмотренных, имеются и другие устройства, защищающие оборудование электровозов при ненормальных режимах. Так, на электровозах ВЛ10 устанавливают малогабаритный быстродействующий выключатель БВЭ-ЦНИИ, обеспечивающий совместно с дифференциальными реле защиту вспомогательных цепей. На электрово­зах ВЛ11, ВЛ8 и ВЛ23 с этой целью применяют дифференциальные реле и специальный контактор вспомогательных цепей (КВЦ).

РЕЛЕ ОБОРОТОВ

На электровозах переменного тока автоматический контроль частоты вращения ротора расщепителя фаз осуществляется с помощью реле оборотов.
Такой контроль необходим, так как асинхронные тяговые двигатели могут быть повреждены, если их включать при неработающем расщепителе фаз или медленно вращающемся роторе расщепителя. Асинхронные двигатели включаются после того, как частота вращения ротора расщепителя фаз достигнет 1430 об/мин.

РЕЛЕ ВРЕМЕНИ

На этих же электровозах применяется защита главного контроллера с помощью реле времени от замедленного вращения кулачкового вала переключателя. Катушка реле времени получает питание на всех фиксированных позициях кулачкового вала переключателя ступеней главного контроллера. Во время поворота кулачкового вала от одной позиции к другой цепь питания ее прерывается специальными блок-контактами. Но якорь реле при этом отрывается от сердечника не сразу, а с выдержкой времени, которую создает медное кольцо, имеющееся на сердечнике: после снятия напряжения с катушки реле медное кольцо поддерживает (в течение нескольких секунд) магнитный поток катушки и якорь удерживается притянутым.

ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ

Довольно широко, особенно в низковольтных цепях управления, для защиты от токов короткого замыкания используют плавкие предохранители. Как правило, применяют трубчатые предохранители, в которых ис­пользуются наполнители, способствующие гашению дуги.

Устройство и виды

Существует несколько разновидностей тепловых реле, каждая из которых имеет свои особенности конструкции и применение.

РТЛ – 3-фазные тепловые реле, которые служат для обеспечения защиты электромоторов от перегрузки, заклинивания ротора, затяжного пуска, перекоса фаз. Реле фиксируются на клеммы пускателя ПМЛ. Реле также может функционировать как самостоятельное устройство защиты с клеммами КРЛ.

РТТ – реле трехфазное, служит для обеспечения защиты короткозамкнутых моторов от токовой перегрузки, затяжного пуска, заклинивания двигателя и других подобных аварийных режимов. Конструкция реле этого вида позволяет закрепить его на корпус магнитного пускателя марки ПМЕ и ПМА, либо в виде самостоятельного прибора на специально предназначенной панели.

РТИ – такие трехфазные реле предохраняют электрический двигатель от перегрузки, фазного перекоса, заклинивания и тому подобных тяжелых режимов. Крепление такого вида реле осуществляется на корпус пускателей КМИ и КМТ.

ТРН – 2-фазный вариант теплового реле, осуществляет контроль запуска и работы устройств, оснащен механизмом ручного возврата контактов и исходное состояние, температура внешней среды не влияет на функционирование реле.

Твердотельное реле на три фазы, в котором отсутствуют подвижные элементы, невосприимчиво к внешней среде, используется в местах с наличием опасности взрыва, обеспечивает защиту от таких же факторов, как и вышеописанные конструкции реле.

РТК – температура контролируется с помощью щупа, находящегося в корпусе электроустройства. Тепловое реле осуществляет контроль одного параметра.

РТЭ – это термореле плавления сплава, состоящее из проводника, выполненного из специального сплава, который способен плавиться при определенной температуре, разрывая тем самым электрическую цепь. Это реле встраивается в конструкцию устройства.

Принцип действия на примере конструкции реле РТТ-32П

Это реле предназначено для защиты электрических цепей от токов перегрузки. Реле третьей величины на номинальный ток 160 ампер.

Исполнение для комплектации с пускателями ПМА-4000, 5000, 6000 с переключающим контактом, пониженной инерционности. Предельно допустимый номинальный ток несрабатывания 100 ампер.

Реле такой конструкции работают следующим образом. Силовые клеммы включены последовательно в цепь каждой фазы. Токоведущие шины рассчитаны на длительный номинальный ток несрабатывания. При прохождении тока перегрузки по одной из фаз повышается температура шины и передается через нагревательные пластины к биметаллической пластине, которая нагреваясь, изгибается, воздействуя на планку толкателя.

Время срабатывания при шестикратном номинальном токе несрабатывания от 6 до 14 секунд. При этом необходимый ход планки от 1,5 до 2 мм. Планка-толкатель воздействует в свою очередь на рычаг сброса защелки. Защелка, поворачиваясь, освобождает подвижные контакты, которые под действием собственной пружины переключаются, размыкая цепь управления и замыкая цепь сигнализации.

После устранения причины повышенного тока можно повторно включить реле с помощью кнопки и возвратного рычага. При этом подвижные контакты зафиксируются подпружиненной защелкой.

Можно изменить номинальный ток несрабатывания в большую или меньшую сторону на 15 ампер. При этом эксцентриком смещается ось рычага сброса защелки, тем самым увеличивая или уменьшая время срабатывания реле.

Особенности теплового реле

В отличие от электрического автомата тепловое реле не разрывает силовые цепи, а только отключает цепь управления магнитного пускателя. Нормально включенный контакт теплового реле работает подобно кнопке «стоп» пускателя, и соединяется с ней по последовательной схеме.

В конструкции термореле нет необходимости повторять функции силовых контактов при его срабатывании, так как реле подключается непосредственно к магнитному пускателю. При таком исполнении схемы достигается значительная экономия материалов для силовых групп контактов. Намного проще подключать малый ток в управляющей цепи, чем отключать три фазы с большим силовым током.

При подключении необходимо знать, что тепловые реле не расцепляют силовую цепь непосредственно, а только подают сигнал на ее отключение при аварийном режиме. Чаще всего в термореле имеется две пары контактов. Одни из них постоянно замкнутые, а другие нормально разомкнутые. При сработке термореле, эти контакты меняются между собой состоянием, то есть, первые контакты становятся разомкнутыми, а вторые замыкаются.

Характеристики реле

Тепловые реле следует выбирать, путем выбора характеристик этого устройства по нагрузке и условиям работы электромотора или другого потребителя электроэнергии:
  • Номинальный ток.
  • Граница регулировки тока сработки.
  • Силовое напряжение.
  • Число и вид дополнительных контактов управления.
  • Мощность при включении управляющих контактов.
  • Граница срабатывания.
  • Чувствительность к перекосу фаз.
  • Класс отключения.
Схема подключения

Во многих схемах при подключении термореле к пускателю применяется постоянно замкнутый контакт, работающий последовательно с кнопкой «стоп» на управляющем пульте. Этот контакт маркируется буквами NC или НЗ.

Нормально включенный контакт при такой схеме может применяться для подключения сигнализации о действии защиты электромотора. В более серьезных усложненных схемах автоматического управления этот контакт может применяться для действия алгоритма аварийной остановки цепи питания.

Независимо от типа подключения электромотора и числа контакторов пускателя, подключение термореле в схему осуществляется простым методом. Оно размещается после контакторов перед электрическим двигателем, а размыкающийся (постоянно замкнутый) включается по последовательной схеме с кнопкой «стоп».

Достоинства и недостатки
Из преимуществ термореле можно назвать:
  • Малые размеры.
  • Небольшая масса.
  • Низкая стоимость.
  • Простая конструкция.
  • Долговечная работа.
Недостатками тепловых реле отмечаются:
  • Необходимость периодической настройки.
  • Периодическая проверка.
Как выбрать тепловые реле
При выборе и установке термореле необходимо учитывать, где оно будет применяться, и наличие функций:
  • Тепловое 1-фазное реле тока с автосбросом возвратится в исходное положение по прошествии некоторого промежутка времени. Если электромотор после сброса все еще находится в состоянии перегрузки, то реле снова сработает.
  • Реле с компенсацией температуры внешней среды (ТРВ) качественно работают в большом интервале температур внешней среды.
  • Многие тепловые реле оснащены разной степенью проверки фаз. Такие механизмы имеют возможность проверить электродвигатель на разрыв фазы с контактора, дисбаланс. При возникновении аварийной ситуации реле прекращает подачу электрического тока к мотору. Дисбаланс может вызвать опасные колебания тока или напряжения электродвигателя, что способствует его неисправности.
  • Функция недогрузки в термореле способна выявить снижение тока в цепи. Это происходит, когда электродвигатель начал работать вхолостую. Такие реле служат для выявления этих различий, по принципу обнаружения перегрузки.
  • Тепловые реле со световыми индикаторами – это модель со светодиодами или датчиками сигналов состояния и включения.

Стоимость термореле колеблется в широких пределах от 500 до нескольких тысяч рублей. Это зависит от производителя, характеристик, уровня пропускания тока. Перед приобретением нужно внимательно ознакомиться с описанием. Вся основная интересующая информация находится в паспорте изделия. Там же имеется инструкция по подключению.

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

Тепловое реле

Этот электрический аппарат, защищает электрическое оборудование от перегрева из-за длительных, но незначительных перегрузках механики асинхронного двигателя.

Рабочий элемент аппарата биметаллическая пластина, состоящая из 2-х металлов с различными коэффициентами линейного расширения.

Ток, протекая через биметаллическую платину, нагревает её. В нормальном режиме этот нагрев не значителен. Повышение тока приводит к дополнительному нагреву пластины. Один металл пластины расширяется сильнее второго металла. Это приводит к резкому прогибу пластины. Прогиб пластины «щелкает» по контактной группе рели и ТР размыкает электрическую цепь.

В ТР могут использоваться дополнительные нагреватели биметаллической пластины.

голоса
Рейтинг статьи
Читать еще:  Горит чек неисправность двигателя ланос
Ссылка на основную публикацию
Adblock
detector