Электрические машины постоянного тока что такое двигатель
Электротехника и электрооборудование — Электрические машины постоянного тока
Содержание материала
- Электротехника и электрооборудование
- Счетчики электрической энергии
- Мегомметры
- Измерение неэлектрических
- Асинхронные двигатели
- Пуск асинхронных двигателей
- Регулирование скорости асинхронных
- Данные асинхронных двигателей
- Синхронные машины
- Передвижные электростанции
- Синхронные электродвигатели
- Машины постоянного тока
- Генераторы постоянного тока
- Двигатели постоянного тока
- Электропривод генератор-двигатель
- Трансформаторы
- Конструкция трансформаторов до 10
- Данные трансформаторов до 10
- Специальные трансформаторы
- Измерительные трансформаторы
- Аппаратура управления и защиты
- Аппаратура автоматическая
- Реле защиты и управления
- Логические элементы
- Электропривод на строительстве
- Выбор электродвигателя
- Схемы электроприводы
- Электропривод строительных
- Сварочное электрооборудование
- Электрическое освещение
- Устройство освещения
- Нормы освещенности
- Электрические сети строительные
- Аппаратура подстанций
- Электрические сети
- Устройство электрических сетей
- Выбор сечения проводов
- Безопасность обслуживания
- Защитное заземление
ГЛАВА ВОСЬМАЯ
ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА
Машины постоянного тока по сравнению с машинами переменного используются в народном хозяйстве страны, ограниченно главным образом там, где необходимо регулировать число оборотов в широких пределах. Например, двигатели постоянного тока применяют для подъемных устройств, в электрической тяге, для приведения в действие прокатных станов, гребных винтов судов и в других видах регулируемого электропривода. Генераторы постоянного тока мы встречаем в тех сбластях техники, где нужен постоянный ток для технологических целей: электролиз, электрическая сварка, когда требуется получить более устойчивую по сравнению с переменным током электрическую дугу, а также для питания двигателей постоянного тока.
Постоянный ток необходим на строительстве. Его применяют для электропривода мощных экскаваторов, зарядки аккумуляторов и в редких случаях электрической сварки.
2. Принцип действия машины постоянного тока
Рассмотрим работу машины постоянного тока в режиме генератора на модели рис.2,
где 1 — полюсы индуктора, 2 — якорь, 3 — проводники, 4 — контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Внешние поверхности проводников очищены от изоляции, а на эти поверхности проводников наложены неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.
На рис.2 крестиком обозначены ЭДС, направленные от нас, точками — ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 3)
Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, — в проводнике, расположенном на линии геометрической нейтрали.
Рис. 3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви — противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 4 представлена схема замещения якорной обмотки.
В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи
, через сопротивление RH протекает ток IЯ.
Рис. 4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф
(1)
где Се — константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство — коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.
Читайте также
Измерения тока
Измерения тока Вопрос. В каких цепях выполняются измерения тока?Ответ. Выполняются в цепях всех классов напряжений, где необходим систематический контроль технологического процесса или работы оборудования (1.6.6).Вопрос. В каких цепях выполняются измерения постоянного
Машины постоянного тока
Машины постоянного тока Вопрос. Что входит в объем испытаний машин постоянного тока?Ответ. В объем испытаний входит:определение возможности включения без сушки;измерение сопротивления изоляции обмоток и бандажей;испытание изоляции повышенным напряжением промышленной
Токопроводы напряжением до 1 кВ переменного и до 1,5 кВ постоянного тока
Токопроводы напряжением до 1 кВ переменного и до 1,5 кВ постоянного тока Вопрос. Каковы требования к размещению токопроводов?Ответ. Должны быть выполнены следующие требования:в местах, где возможны механические повреждения, токопроводы должны иметь соответствующую
Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА
Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА Область применения Вопрос. На какие РУ распространяется настоящая глава Правил?Ответ. Распространяется на РУ и НКУ напряжением до 1 кВ переменного тока и до 1,5 кВ
Двигатели постоянного тока
Двигатели постоянного тока Двигатели постоянного тока для любительского конструирования могут использоваться для движения и перемещения конструкций роботов (см. рис. 4.13). Для большинства таких двигателей характерны высокая частота вращения ротора и небольшой крутящий
Мостовая схема управления двигателем постоянного тока
Мостовая схема управления двигателем постоянного тока При конструировании робота желательно наличие простой схемы управления его включением и выключением. Кроме того, необходима схема реверса направления вращения двигателя. Таким требованиям удовлетворяет мостовая
1.13. Фотоэлектричество при 48 вольтах постоянного тока: вспомнили о гениальном Эдисоне
1.13. Фотоэлектричество при 48 вольтах постоянного тока: вспомнили о гениальном Эдисоне Томас Альва Эдисон (1847–1931) был величайшим изобретателем своего времени. Он изобрел лампу накаливания (с угольной нитью), микрофон, значительно усовершенствовал телефон, придумал
Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА
Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА Область применения Вопрос 1. На какие распределительные устройства распространяется настоящая глава Правил?Ответ. Распространяется на распределительные устройства
1.8.14. Машины постоянного тока
1.8.14. Машины постоянного тока Вопрос 38. Как производится измерение сопротивления изоляции обмоток?Ответ. Производится при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжении 500 В, а при номинальном напряжении обмотки выше 0,5 кВ – мегаоммет-ром
Токопроводы напряжением до 1 кв переменного и до 1,5 кв постоянного тока
Токопроводы напряжением до 1 кв переменного и до 1,5 кв постоянного тока Вопрос 59. Какие требования должны быть выполнены при размещении токопроводов?Ответ. Должны быть выполнены следующие требования:1) в местах, где возможны механические повреждения, токопроводы должны
5.3.3. ЭЛЕКТРОПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
5.3.3. ЭЛЕКТРОПЕРЕДАЧИ ПОСТОЯННОГО ТОКА Электропередачи и вставки постоянного тока обладают рядом экономически выгодных преимуществ по сравнению с передачами переменного тока. Так как на нормальный режим работы линии постоянного тока не оказывают влияния ее реактивные
6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙ
6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙ Без существенного изменения конструктивных черт машины постоянного тока к 30-м годам нашего столетия стали более мощными, значительно расширился диапазон регулирования их частоты вращения. Как правило, машины постоянного тока
6.2.3. ТЯГОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА
6.2.3. ТЯГОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Пионером советского тягового электромашиностроения был завод «Электрик» (г. Санкт-Петербург), который в начале 1924 г. изготовил десять двигателей мощностью 110 кВт при частоте вращения 660 об/мин для тепловоза с
6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА В электроприводах постоянного тока различных механизмов еще с 20-х годов наряду с системами «генератор — двигатель» стали находить применение системы «преобразователь — двигатель», основанные на ионных
6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ)
6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ) Эта группа машин всегда была важной составной частью отечественного электромашиностроения. Крупные электрические машины обеспечивают привод вспомогательного оборудования электростанции — насосов, мельниц,
11.2.5. ПРЕОБРАЗОВАТЕЛИ ЛИНИЙ ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
11.2.5. ПРЕОБРАЗОВАТЕЛИ ЛИНИЙ ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА Линии передачи постоянного тока высокого напряжения предполагались как средство передачи энергии на большие расстояния. Первой опытно-промышленной линией была передача Кашира — Москва; до настоящего времени
Перспективы развития электрических машин постоянного тока
Статистически данные указывают на то, что наиболее часто различные виды электрических машин можно встретить именно в потребительском секторе.
Это объясняется тем, что подобные устройства присутствуют почти во всех сферах жизни человека. Наиболее ярким примером являются системы управления легковых автомобилей. Изменение положения сидений, открытие окон, работа дворников – все это микроэлектромашины переменного тока.
Несмотря на то, что наиболее активно устройства такого рода разрабатываются для промышленных и оборонных целей, в последнее время все больше начали подниматься вопросы оптимизации и улучшения показателей микромашин.
Электрические машины постоянного тока предназначены для преобразования электрической энергии как в механическую, так и обратно. В этом проявляется принцип обратимости электрических машин: если на зажимы подать напряжение от постороннего источника тока, то машина работает как двигатель; если же ее якорь привести во вращение от постороннего механического первичного двигателя, то с зажимов машины снимается напряжение, т. е. она работает как генератор. Поэтому в первом случае они называются двигателем, а во втором — генератором. По своей конструкции генератор постоянного тока ничем не отличается от двигателя.
Принцип работы генератора
В рамке, вращающейся в постоянном магнитном поле, возбуждается переменный ток; следовательно, переменный ток возбуждается и в обмотке якоря. Его преобразуют в постоянный ток с помощью коллектора. Принципиальная схема этого процесса показана на рисунке. Как видно, при повороте рамки на 180° э. д. с. индукции внутри рамки изменит знак. Но при этом и полукольца повернутся на 180°, вследствие чего полярность щеток не изменится. В цепи возникает пульсирующий ток одного направления i(t) . Если на якоре разместить еще одну обмотку, как показано на рисунке пунктиром, то пульсации напряжения во внешней цепи сгладятся и ток будет почти постоянным. В реальном генераторе обмотка якоря содержит несколько десятков витков, присоединенных по определенной схеме к многопластинчатому коллектору, состоящему из такого же числа пластин. В этом случае пульсации тока совершенно ничтожны и во внешней цепи течет постоянный ток.
Принцип работы электродвигателя
На проводник с током, помещенный в магнитное поле, действует сила, которую называют силой Ампера. , из-за наличия силы Ампера вращающий момент, действующий на рамку, пропорционален силе тока в рамке, ее размерам, индукции магнитного поля, в котором она вращается, и зависит от угла поворота рамки.
Это свойство рамки используют в электродвигателях, преобразующих энергию электрического тока в механическую. В технических машинах постоянного тока рамки укладывают в пазах цилиндра, набранного из пластин листовой стали, называемого якорем 3 машины. Начала и концы рамок припаивают к изолированным друг от друга пластинам разрезанного на части широкого медного кольца, названного коллектором 1 . Коллектор укрепляют на общей оси с якорем. С помощью угольных стержней — «щеток» 2 , которые касаются коллекторных пластин, концы рамок соединяются с внешней цепью. Магнитное поле, в котором вращается якорь, создается током, протекающим по обмотке возбуждения индуктора, состоящего из сердечника 4 и обмотки возбуждения 5 . Индуктор закреплен на станине машины 6 .
Режимы работы генератора
У генератора различают три режима работы: при независимом возбуждении (обмотка возбуждения питается от отдельного источника напряжения); самовозбуждение (обмотка возбуждения включается параллельно якорю); смешанное возбуждение ( при наличии двух обмоток возбуждения — последовательной и параллельной). На рисунке приведены характеристики зависимостей напряжения якоря от тока, соответствующие этим режимам работы генератора.
Регулирование частоты вращения двигателя может осуществляться тремя способами: изменением напряжения; магнитного потока (применимо только к двигателям параллельного и смешанного возбуждения) и добавочного сопротивления в цепи якоря.
Наиболее экономичный способ — регулирование напряжения на зажимах якоря.
В момент пуска ЭДС якоря равна нулю Iп=Uя / Rя , что в 10-30 раз больше номинального тока. Поэтому для ограничения тока на время пуска в цепь якоря включают добавочное сопротивление, называемое пусковым. Так как с ростом скорости ток снижается, то в качестве пускового сопротивления используется регулировочный реостат, имеющий ряд ступеней.
Направление вращения двигателя можно поменять переключением полярности якоря или обмотки возбуждения.
Повысить обороты двигателя выше номинальных можно ослаблением магнитного потока, зона регулирования ограничивается возрастанием тока возбуждения.
Реостатный пуск двигателя
Свойства и характеристики двигателей постоянного тока существенно зависят от того, как меняется магнитный поток при изменении механической нагрузки двигателей. Характер магнитного потока определяется способом возбуждения.
В машинах постоянного тока различают четыре системы возбуждения:
- параллельное или шунтовое;
- последовательное или сериесное;
- смешанное или компаундное;
- независимое.
Двигатели с последовательным возбуждением обладают большим пусковым моментом, т. е. вращающим моментом в момент пуска, когда скорость вращения якоря равна нулю. Это делает их незаменимыми во всех видах электротранспорта, где необходимо большое тяговое усилие при трогании с места. Однако частота вращения якоря двигателя с последовательным возбуждением резко меняется при изменении нагрузки, что в ряде случаев нежелательно.
У двигателей с параллельным возбуждением скорость вращения якоря в широких пределах не зависит от нагрузки и может плавно регулироваться за счёт изменения силы тока в обмотке возбуждения, что достигается регулирующим реостатом. Это свойство двигателей с параллельным возбуждением определяет область их применения в качестве электропривода всевозможных станков и агрегатов, где требуется плавная регулировка скорости вращения и не нужен большой пусковой момент.
В машинах постоянного тока различают следующие основные виды потерь:
- потери мощности в цепи якоря или переменные потери, зависящие от нагрузки;
- потери мощности в стали;
- механические потери;
- потери мощности в цепях возбуждения.
Когда машина работает вхолостую, полезная мощность и соответственно КПД равны нулю.
Внешняя характеристика генератора Uя =f( Iя )
Области применения машин постоянного тока
Двигатели постоянного тока, в отличие от двигателей переменного тока, обладают хорошими регулировочными свойствами и могут иметь механические характеристики n = f(Mвн), удовлетворяющие требованиям большинства рабочих механизмов. Поэтому двигатели постоянного тока широко используются на транспорте (магистральные электровозы, тепловозы, пригородные электропоезда, метрополитен, трамваи, троллейбусы), в станках, прокатных станах, кранах, судовых установках. В подавляющем большинстве автомобилей, тракторов, самолетов и других летательных аппаратов двигатели постоянного тока приводят во вращение все вспомогательное оборудование.
Постоянный ток для питания двигателей получают либо с помощью полупроводниковых выпрямительных установок, преобразующих переменный ток в постоянный, либо с помощью генераторов постоянного тока. Генераторы постоянного тока используют также в технологических процессах для питания электролизных и гальванических установок. Широкое распространение получили генераторы постоянного тока специального назначения (сварочные генераторы, генераторы для освещения поездов, электромашинные усилители постоянного тока, возбудители синхронных машин).
Недостатком машин постоянного тока является их относительно высокая стоимость, а также наличие скользящего контакта между щетками и коллектором. В последние годы в связи с развитием полупроводниковой техники ведутся работы по замене механического коллектора полупроводниковым преобразователем. Однако, несмотря на большие усилия, направленные на создание полупроводниковых преобразователей частоты, электроприводы с такими преобразователями оказываются в 1,5 — 2,5 раза тяжелее и дороже электроприводов с двигателями постоянного тока. Поэтому выпуск машин постоянного тока не сокращается, и они находят все новые области применения.
Грузовик eEconic — электрический мусоровоз от Daimler Truck
Daimler Truck, тем не менее, продолжает их разработку. Но одновременно компания форсирует испытания своего второго серийного электрического грузовика, производство которого должно начаться в 2022 на том же заводе в Вёрт-ам-Райне.
Конкуренты не дремлют: электрический мусоровоз немецкого стартапа Quantron в Нюрнберге
Созданный на базе eActros 27-тонный eEconic задуман главным образом как мусоровоз. Этой модели не требуется большая дальность пробега — большинство стандартных городских маршрутов не превышает 100 километров, да и обширная сеть терминалов быстрой зарядки ей не нужна — заряжаться можно будет спокойно всю ночь на территории городского автопарка. Но в этом сегменте у мирового лидера будет немало конкурентов. Один из них — немецкий стартап Quantron: его электрический мусоровоз уже испытывался в Нюрнберге на практике.