0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания на воде как его сделать

Житель Петербурга собирает в гараже экологически чистый двигатель на водороде

Житель Петербурга собирает в гараже экологически чистый двигатель на водороде
  • Поделиться в Facebook
  • Поделиться в Twitter

No media source currently available

  • 270p | 8,7MB
  • 360p | 13,3MB
  • 720p | 29,2MB
  • 1080p | 52,1MB

Изобретатель Алексей Данилин уже год пробует собрать в гараже на окраине Петербурга двигатель, где в качестве топлива – водородная смесь, а вместо выхлопных газов в атмосферу выделяется обыкновенная вода. Основных проблем у него пока две: материалы, выдерживающие ударную волну, и место для изготовления полномасштабного прототипа.

Лаборатория Данилина находится в старом гараже на приусадебном участке на окраине Петербурга. Пока изобретатель сумел построить тестовый образец водородного двигателя, размером в два раза меньше, чем он должен быть, согласно его же расчетам, да и то: чтобы построить эту машину, изобретатель потратил целый год.

«Самым лучшим топливом будет водород. Водородно-кислородная смесь при взрыве, при сгорании, выделяет только чистую воду, практически дистиллированную», – рассказывает о своей работе изобретатель.

Ударная волна в трубке, которая стоит на испытательном стенде, должна работать, как поршень в обычном автомобильном двигателе

«Ударная волна – это движение газов в каком-то замкнутом объеме… или в незамкнутом. Она движется быстрее скорости звука. Любой взрыв или электрический разряд эту волну инициирует», – поясняет Данилин.

Усовершенствованный в Санкт-Петербурге унитаз экономит воду
  • Поделиться в Facebook
  • Поделиться в Twitter

No media source currently available

Даже в таком небольшом образце работа ударной волны впечатляет.

В момент движения ударной волны в трубе изобретатель искусственно создает там же индукционное поле. Все происходит в районе стеклянной вставки – той самой, где размещены электроды.

Изобретатель уверен, что ударная волна «вырвет» свободные заряженные частицы, а потом сама установка даст электрический ток.

«Этот перепад напряжения можно трансформировать с помощью того же трансформатора, который возбуждает пусковые электрические разряды», – замечает он.

Плавающий минивездеход-амфибия своими руками от умельца из России
  • Поделиться в Facebook
  • Поделиться в Twitter

No media source currently available

  • 270p | 3,1MB
  • 360p | 5,1MB
  • 720p | 10,8MB

Пока его водородный двигатель – только теория. Но похожими разработками занимаются не только кустари-одиночки, но и крупные мировые автопроизводители. Водород, безусловно, – один из самых экологичных вариантов: запасы этого топлива на земле практически бесконечны, а вредные выбросы от такого двигателя стремятся к нулю.

Пока КПД работающих водородных двигателей не идут ни в какое сравнение с классическим двигателем внутреннего сгорания. Но если предположения Алексея Данилина окажутся верны, одна трубка с управляемой ударной волной сможет дать до 30 лошадиных сил. Четыре трубки дадут количество энергии, сопоставимое с малолитражным двигателем, который сегодня ставят на многие городские автомобили.

Алексей признает, что в одиночку ему не собрать полноценный экземпляр двигателя, как тот, что на чертеже. И тем более в гаражных условиях не подашь водород в установку. Нужна целая лаборатория. Поэтому сейчас он ищет единомышленников, которых могла бы заинтересовать идея экологически чистого двигателя. Также, по словам изобретателя, надо выяснить, есть ли вообще в природе материалы, которые выдержат нагрузки, предназначенные для этого типа двигателя. И если окажется что да – работа выйдет на финишную прямую.

Сколько их всего?

Оценки количества автомобилей на дорогах планеты проводятся довольно регулярно, хотя понятно, что все до последнего пересчитать не удастся. Последнее наиболее полное исследование провела Международная ассоциация автопроизводителей (OICA) в 2015 году.

Она насчитала 947 млн легковых и 335 млн коммерческих автомобилей, подавляющее количество из них — бензиновые или дизельные.

Годом ранее аналитики фирмы Navigant Research насчитали 1,2 млрд автомобилей — в своих подсчетах они не учитывали тяжелую строительную и внедорожную технику.

В прошлом году свои прогнозы опубликовали аналитики ОПЕК: по их оценкам, к 2045 году в мире будет 2,6 млрд автомобилей (430 млн из которых — электрические).

Аналитиков ОПЕК, наверное, можно заподозрить в некой предвзятости, однако и так понятно, что полтора-два миллиарда машин с ДВС в одночасье не исчезнут, как бы того ни желали экологи.

Все эти автомобили надо где-то заправлять, и уже одно это обстоятельство отодвигает неминуемую кончину АЗС в сравнительно далекое будущее.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Читать еще:  Высокооборотистый двигатель что это такое

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Три сотни на весь мир

На пути распространения водородного транспорта существует немало проблем. Для производства самого водорода тоже необходимо электричество, а значит, встает вопрос о его «чистоте». Наряду с высокой ценой водородомобилей еще одним преткновением является почти полное отсутствие инфраструктуры.

Стран, где целенаправленно развивают сети водородных заправок, еще меньше, чем компаний по производству самих водородомобилей. Германия, США и Япония — вот и все. В остальных точках планеты случаи строительства заправок единичны или их вовсе нет, либо станции недоступны для общественного пользования. Но и в стане лидеров расширение идет черепашьими темпами: в 2017-м в Германии построены всего 24 общественных водородных заправки, в Японии — 11, а в США только пять, причем все — в Калифорнии.

По данным Ludwig-Bölkow-Systemtechnik, международной консалтинговой компании в сфере устойчивой энергетики и мобильности, на начало 2018 года в мире насчитывалось лишь 325 водородных заправок: 139 в Европе, 118 в Азии и 68 в Северной Америке. Это не идет ни в какое сравнение со стремительно расширяющейся сетью зарядных терминалов для электромобилей, которых каждый год в мире открывается несколько десятков тысяч.

В 2015 году Toyota открыла публичный доступ к своим патентам по топливным элементам на водороде. На тот момент их было 5680 штук

Почему процесс движется столь медленно? Дело в том, что строительство одной такой станции обходится в несколько сотен тысяч долларов и сопряжено с множеством трудностей, начиная с создания условий для безопасного подвоза и хранения топлива и заканчивая собственно заправкой машины. При нынешнем уровне распространения водородомобилей расширение сети заправок для них равноценно закапыванию денег в землю, на чьи бы средства — государственные или частных энергетических компаний — это ни делалось. Сегодня компания Shell — единственная среди крупных топливных операторов мира — участвует в создании сети водородных заправок. В марте и июне 2018 года она запустила первые водородные заправки в Великобритании и Канаде, а к 2023-му рассчитывает открыть 400 таких станций по всему миру.

Получается замкнутый круг: число водородных заправок не будет расти, пока не начнут массовый выпуск машин на водороде, а те, в свою очередь, не получают распространения — в том числе из-за отсутствия инфраструктуры.

Прототип за свой счет

Изобретением, вспоминает Лукьянов, в 2006 году заинтересовались в правительстве страны: ученые получили грант на 7,6 млн рублей от Федерального агентства по науке и инновациям.

На эти средства провели научно-исследовательские работы, успешно их защитили, а вот на создание опытного образца конкурс выиграть не смогли. В итоге первый прототип устройства псковские инженеры изготовили за свой счет.

«Мы своими силами создали прототип, года три создавали в лабораториях ПсковГУ, трудилась вся команда, около 15 человек. Университет помог нам приобрести парогенератор, поставили его в нашу машину, сделали систему, и в итоге появился модуль жизнеобеспечения с внешним подводом тепла (пара) из парогенератора», — говорит Лукьянов.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:

  1. Простой, цилиндрического типа. Производит 700 миллилитров газа в минуту. Такой производительности достаточно для двигателей с рабочим объёмом до 1,4 литров.
  2. С ячейками раздельного типа. Является самым эффективным по типу конструкции и производительности. Выход газа превышает 2 литра в минуту. Такой объём позволяет применять его на грузовом транспорте.
  3. Электролизёр с пластинами открытого типа. Эта конструкция обеспечивает дополнительное охлаждение системе, в результате чего может использоваться при длительной работе агрегата. Выход газа регулируется количеством пластин реактора.

Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Котлы, работающие на газе, являются оптимальным решением для отопления практически любого помещения. Они просты в использовании, имеют небольшие размеры и солидный срок эксплуатации, поэтому одинаково подходят как для частых домов, так и для квартир.

Читать еще:  Шевроле лачетти плавают обороты двигателя при переключении передач

Любой газовый котел имеет 3 основных компонента:

  • газовая горелка;
  • теплообменники;
  • система управления и контроля.

В зависимости от модели котел может иметь различное дополнительное оборудование, такое как насос, вентилятор, расширительный бак, предохранительный клапан, электронную систему управления, диагностики и защиты. Если у котла есть такие дополнительные элементы, то его вполне можно считать миникотельной, которая работает полностью в автоматическом режиме. Она самостоятельно поддерживает заданную программой температуру, контролирует все внутренние процессы, а в случае аварии перекрывает подачу газа и отключается.

Принцип работы котла

Чтобы понять, как работает газовый котел отопления, нужно не только знать его устройство, но и разобраться, какие программы и функции в нем заложены. В своей работе котел ориентируется на показания датчиков. Он при помощи встроенной электроники определяет потребность в горячей воде и запускает работу управляющей газовой арматуры. После этого включается газовая горелка, которая нагревает воду в теплообменнике до определенной температуры, и циркуляционный насос, который тут же разносит ее по системе отопления. После того как температура в системе достигает заданного значения, котел выключает горелку и переходит в режим ожидания. Когда температура в системе отопления снижается до определенного показателя, котел снова включает горелку и цикл повторяется.

По такой схеме работают все одноконтурные котлы в режиме отопления. Двухконтурные котлы выполняют точно такой же цикл, но его работу может прервать система горячего водоснабжения (ГВС). Двухконтурный котел имеет более сложную систему подготовки воды, так как выполняет сразу 2 функции:

  • отопление помещения;
  • горячее водоснабжение.

У него, кроме основного теплообменника, имеется второй контур (скоростной теплообменник), который и предназначен для подготовки горячей воды. Двухконтурный котел может работать в 2 режимах:

  • летний – только подготовка горячей воды для системы водоснабжения (ГВС);
  • зимний (смешанный) – нагрев воды для системы отопления и для ГВС.

Если котел работает в зимнем режиме, то вода нагревается в первичном теплообменнике и разносится циркуляционным насосом по системе отопления. При открытии крана горячей воды в котле срабатывает датчик протока. Он подает сигнал на плату управления, которая переключает трехходовой клапан из режима отопления на режим ГВС. В результате горячая вода из основного теплообменника не идет на батареи, а остается в котле.

Она начинает циркулировать по кругу, проходя через вторичный теплообменник и нагревать воду для ГВС.

Вторичный теплообменник пластинчатый, поэтому вода практически моментально нагревается, и мы мгновенно получаем в кране горячую воду. Происходит это до тех пор, пока кран горячей воды не закроется. После перекрытия воды датчик протока сообщает об этом плате, и она переключает трехходовой клапан в изначальное положение, а нагретая вода из первичного теплообменника снова поступает в систему отопления.

Из описания видно, что принцип работы газового котла не позволяет одновременно работать отоплению и подавать горячую воду. Однако уже есть специальные теплообменники, которые могут это делать (о них будет рассказано ниже).

Устройство газового котла

Котлы различных производителей могут отличаться устройством и расположением элементов, однако они все имеют типичную схему. Мы ее рассмотри на примере устройства двухконтурного котла (как самого сложного).

Он имеет такие основные элементы:

  • газовый клапан для подачи топлива на горелку;
  • газовую горелку;
  • блок розжига;
  • электрод розжига;
  • датчик контроля наличия пламени;
  • камеру сгорания газа;
  • первичный (основной) теплообменник;
  • вентилятор;
  • датчик тяги отработанных газов – маностат;
  • датчик температуры воды в первичном контуре;
  • аварийный датчик температуры воды первичного контура;
  • расширительный бачок;
  • циркуляционный насос первичного контура;
  • фильтр системы отопления;
  • датчик давления воды в системе отопления;
  • кран подпитки водой системы отопления;
  • предохранительный клапан системы отопления;
  • трехходовой клапан;
  • теплообменник горячего водоснабжения (ГВС);
  • байпас;
  • датчик протока ГВС;
  • фильтр ГВС;
  • кран слива воды;
  • электронный блок управления (плата управления);
  • регуляторы температуры системы отопления и ГВС;
  • переключатель режимов работы (лето, зима).

Как видно из большого количества разнообразных датчиков, половина устройств осуществляет мониторинг работы системы и позволяет котлу безопасно работать в автоматическом режиме. Кроме этого у котла имеются стандартные штуцеры для:

  • подачи топлива на газовый клапан;
  • подачи воды в систему отопления;
  • входа обратной воды из системы отопления;
  • входа холодной воды для ГВС;
  • выхода подогретой воды ГВС.

Чтобы более ясно понять работу котла нужно рассмотреть каждый узел в отдельности и определиться с его функциями и назначением. Стоит сразу запомнить что «лишних» и «маловажных» деталей в котле не бывает, и выход из строя даже одной из них приведет к поломке или неправильной работе котла. Ниже мы детально разберем самые важные блоки газового котла, и какие элементы в него входят.

Газовая горелка и система удаления дыма

Основным элементом газового котла является горелка. В современных котлах она модулируемая, то есть способна менять количество потребляемого газа. Эта функция при розжиге и в начале цикла нагрева уменьшает подачу газа (нагрев теплообменника происходит постепенно). Затем увеличивает подачу газа при приближении к заданной температуре и поддерживает ее. Когда вода нагревается и приближается время отключения, газа подается меньше. Таким образом, снижается расход газа до 15% и уменьшается количество циклов включения-выключения, что увеличивает срок службы котла.

Подготовка и подача топлива осуществляется при помощи газового клапана. Во время работы подача топлива регулируется при помощи шагового электродвигателя. Он управляются микропроцессором электронной платы по заложенной на заводе в него программе. Таким образом, при помощи штатной панели управления вы можете задавать необходимую температуру системы отопления и ГВС.

Также на горелке расположен электрод розжига и датчик контроля наличия пламени. Горелка находится в замкнутой камере сгорания, которая оканчивается выводом отработанных газов. На выводе установлен вентилятор для принудительного удаления дыма. Перед вентилятором есть датчик тяги – моностат, который сразу отключит котел, если дым не будет вытягиваться. Особенно часто маностат срабатывает в сильные морозы, когда в выхлопной трубе замерзает конденсат и перекрывается канал выхода отработанных газов.

Читать еще:  Двигатель caab volkswagen caravelle т5 как эксплуатировать

Теплообменники

Теплообменники делятся на два вида: первичный и вторичный. Первый устанавливается над горелкой, так как в нем подогревается вода первого (отопительного) контура. Он представляет собой набор медных трубок, в которых циркулирует вода с помощью проточного насоса. Для увеличения полезной площади и быстроты нагрева воды на трубки напрессовываются медные пластины (ребра).

Вторичный теплообменник нужен для подогрева воды ГВС. Он имеет отличительные особенности, которые позволяют моментально нагревать воду. Выглядит теплообменник как набор пластин, между которыми раздельно циркулирует вода перового и второго контура. Когда открывается кран горячей воды, вода в первичном контуре идет не на систему отопления, а перенаправляется на вторичный теплообменник. Таким образом, вместо обогрева батарей происходит нагрев воды контура ГВС. Особенность двухконтурного котла в том, что отопление и подогрев воды ГВС не может производиться одновременно. В домашних условиях это практически не заметно, так как расход горячей воды незначителен по сравнению с работой системы отопления.

Когда суточный расход воды велик и составляет конкуренцию системе отопления, используются двухконтурный котел с битермическим теплообменником. Он характеризуются тем, что имеют только один теплообменник, который расположен над горелкой. Его конструкция немного сложнее и внутри трубок основного контура идут трубки контура ГВС. Получается, что горелка нагревает всего один теплообменник, в котором одновременно находится вода системы отопления и ГВС (потому и называют его битермический).

Система ГВС

Главным отличием двухконтурных котлов является система горячего водоснабжения (ГВС). Она позволяет практически мгновенно получать горячую воду. Для этого в котле имеется вторичный контур ГВС, который состоит из пластинчатого теплообменника, датчика протока воды и трехходового клапана. Главным датчиком, который управляет процессом запуска вторичного контура, является датчик протока. При открытии крана он подает команду на плату управления, а та, в свою очередь, на трехходовой клапан, который перекрывает подачу воды на систему отопления и направляет ее на пластинчатый теплообменник ГВС. В результате горячая вода, которая нагревается в основном теплообменнике, с помощью насоса начинает циркулировать по «малому» кругу внутри котла, проходя через теплообменник ГВС и нагревая в нем воду.

Байпас

Он соединяет прямой и обратный трубопровод основного контура. На байпасе установлен регулируемый перепускной клапан, который при возникновении критического давления открывается, и часть воды перетекает из прямого трубопровода в обратный. Клапан обеспечивает отсутствие гидравлических ударов, при включении насоса и ограничивает максимальную скорость циркуляции воды в системе отопления.

Расширительный бачок

При нагреве вода начинает расширяться в системе отопления и чтобы компенсировать избыток давления, устанавливают расширительные бачки. Они есть у всех без исключения котлов, но могут отличаться формой и размерами (зависит от мощности котла).

Расширительный бак состоит из 3 частей:

  • пространство под воду системы отопления;
  • мембрана;
  • пространство, накачанное азотом.

Бачок во время работы отопительной системы за счет мембраны нивелирует изменения давления, поэтому в процессе работы котла давление остается неизменным.

Плата управления и датчики

Какое бы ни было устройство газового котла, в нем обязательно есть плата (блок) управления. Она позволяет выставить необходимые режимы котла, контролирует и анализирует информацию от датчиков, осуществляя автоматическое управление всеми процессами в системе. На самой плате нет никаких регулировок и настроек, все установки производятся на заводе. Единственное что может изменить пользователь – это подключить наружный датчик температуры. Если датчика нет, система контроля ориентируется на температуру воды в системе и при ее остывании запускает котел.

Если подключить датчик, система управления котла начнет ориентироваться уже по нему. Чтобы подсоединить наружный термометр на плате убирается перемычка, а вместо нее подключаются провода контрольного прибора. Существуют простые мембранные датчики, на которых только выставляются максимальная и минимальная температура в помещении. Есть и более сложные электронные датчики, в которых можно указывать не только температуру, но и время включения, отключения котла. Например, котел не будет работать пока вы на работе, а включится за час до вашего возвращения.

Нормальная работа котла, его надежность зависит от множества датчиков и систем контроля таких как:

  • датчик давления газа в системе;
  • датчик контроля наличия пламени;
  • датчик тяги отработанных газов;
  • датчик температуры воды в первичном контуре;
  • аварийный датчик температуры воды первичного контура;
  • датчик давления воды в системе отопления;
  • предохранительный клапан системы отопления;
  • датчик протока ГВС.

Благодаря им котел может самостоятельно работать в течение целого сезона без остановок и поломок.

Система блокировки котла

К сожалению, в процессе работы возникают проблемы не связанные с самим котлом, а возникающие по вине внешних факторов. Например, если в доме отключат газ, то котел моментально это определит и отключится. Перезапустить его придется вручную, выполнив специальные команды.

При возникновении ошибок или аварий в работе котла он сразу прекращает работу и подает условный сигнал. В моделях с электронным монитором высвечивается код ошибки в виде набора цифр или букв. В устройствах с аналоговым (механическим) управлением ошибка обозначается морганием индикаторов.

В паспорте любого котла имеется таблица с кодами ошибок, их расшифровкой и инструкцией как сбросить (устранить) аварию. Такие таблицы легко найти в интернете, тем более коды ошибок практически у всех котлов совпадают.

Ссылка на основную публикацию
Adblock
detector