Что управляем клапанами двигателя - Авто журнал kupim-avto57.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что управляем клапанами двигателя

Регулирующие клапаны на электроприводе – назначение и разновидности

Среди многообразия трубопроводной арматуры особой популярностью пользуется регулирующий клапан. Он предназначен для контроля параметров перемещаемой среды в трубопроводных магистралях разного назначения. Регулировка осуществляется за счет изменения пропускной способности клапана. Для автоматизированного управления регулирующей арматурой применяют различные типы приводов. Они используются в трубопроводах, отдельные элементы которых подвергаются значительным нагрузкам, и могут быть электрическими или пневматическими.

Устройства с электроприводами востребованы в котельных, сетях отопления и вентиляции и на тепловых пунктах. Клапаны с пневмоприводами устанавливают на производствах, где управление осуществляется воздухом. Также клапаны с пневматическим приводом используются на взрывоопасных трубопроводах и для регулировки вне помещений.

А зачем все это?

Многие могут недоуменно спросить: а зачем совершенствовать двигатели внутреннего сгорания (ДВС), использующие дизель или бензин – ведь «завтра» уже весь транспорт будет электрическим? Действительно – это хороший и правильный вопрос. Однако, в реальном транспортном мире понятие «завтра» является достаточно неточным. С электрическими автобусами, по аналогии с метро и трамваями, вроде все понятно – в ближайшее десятилетие почти весь муниципальный транспорт откажется от ДВС. Перемещать десятки и сотни людей по заранее заданному маршруту действительно экономически эффективнее с помощью электричества. А вот грузовые и легковые автомобили с ДВС не особо сдают свои позиции и даже, по оптимистичным прогнозам, в 2030 году лишь 28% новых автомобилей будут полностью электрическими.

Camcon создала первую полностью электронную систему клапанов двигателя

Очевидно, что еще несколько десятилетий продолжится использование традиционного транспорта с ДВС, особенно с учетом фактора постоянного совершенствования двигателей. «Цифоровые» клапаны Camcon Automotive – это не научное открытие, а технологическое усовершенствование. Давно уже было известно, что оптимальное управление работой клапанов двигателя зависит от сложившейся реальной ситуации на дороге. Изменяя основные параметры функционирования каждого клапана можно существенно увеличить эффективность работы всего двигателя и уменьшить вредные выбросы в атмосферу.

Что управляем клапанами двигателя

Надёжное функционирование ЖРД и ДУ обеспечивают разработанные на предприятии и изготовляемые серийно агрегаты автоматики: различные типы клапанов, регуляторы, дроссели, редукторы и стабилизаторы.

Все они отличаются разнообразием, как по конструктивному исполнению, так и по способу установки в схему изделия. Многие из них работоспособны в средах агрессивных высококипящих и криогенных компонентов топлива с давлением до 60 МПа и различных газов с давлением до 35 МПа.

В качестве приводов используются сжатый газ, электрический ток и пиропатроны.

В пускоотсечных агрегатах применены уплотнения, обеспечивающие самые высокие требования по герметичности при давлениях до 35 МПа.

Более сотни технических решений, заложенных в конструкцию агрегатов автоматики, защищены авторскими свидетельствами на изобретение.

Назначение агрегатов регулирования состоит в том, чтобы поддерживать основные параметры двигателя или двигательной установки, а именно тягу, соотношение компонентов топлива камеры сгорания и газогенератора и давления наддува баков с топливом в заданных пределах.

Поддержание этих параметров обеспечивает высокие удельные параметры не только ДУ или двигателя, но и ракеты.

Система регулирования, состоящая из агрегатов регулирования, повышает надёжность функционирования двигателей, т.к. отклонения параметров узлов, входящих в состав двигателей, связанных с их изготовлением и эксплуатации, а также различие свойств топлива, не снижает точности поддержания тяги и соотношения компонентов топлива сверх указанных в требованиях ракетных фирм.

Основные задачи, которые приходится решать при проектировании и отработке агрегатов регулирования и автоматики для ЖРД:

  • обеспечение надёжной работоспособности конструкции при минимальном весе согласно требованиям ТЗ;
  • обеспечение необходимой точности срабатывания автоматов и поддержание регулируемых параметров;
  • обеспечение требуемых параметров агрегатов регулирования и автоматики для получения заданного по времени выхода двигателя на режим и его останов;
  • обеспечение требуемых параметров агрегатов регулирования для получения необходимой динамической устойчивости систем по регулированию тяги и соотношению компонентов топлива двигателя.

Регуляторы тяги

Регуляторы тяги обеспечивают поддержание давления или расхода компонентов топлива, поступающих в камеру сгорания или газогенератор. Двигатели КБхиммаш отличаются широким диапазоном тяг, поэтому диапазон по расходу высокотемпературных компонентов топлива составляет от 0,05 кг/с до 13 кг/с, величина регулируемого давления составляет от 50 кгс/см 2 до 200 кгс/см 2 при рабочем давлении от 75 кгс/см 2 до 350 кгс/см 2 .

Стабилизаторы давления

Система регулирования соотношения компонентов топлива двигателя обеспечивает с высокой точностью постоянное значение соотношения компонентов топлива в камере сгорания, и, следовательно, минимальные гарантийные запасы топлива, заправляемые в баки ракеты.

Диапазон по расходу стабилизаторов давления составляет от 0,75 кг/с до 44 кг/с. Точность поддержания параметра 2%.

Система регулирования соотношения компонентов топлива в газогенераторе обеспечивает заданную температуру газа на входе в турбину ТНА при работе двигателя, что является важным для надёжной работы.

Диапазон по расходу стабилизаторов давления составляет от 0,02 кг/с до 0,2 кг/с. Точность поддержания параметра 2%.

Дроссели

Разрабатываемые КБхиммаш дроссели обеспечивают изменение расхода компонента топлива в камеру сгорания или газогенератор для двигательных систем СОБ, РКС и РСК.

Редукторы давления

Газовые редукторы, работающие на воздухе, азоте и гелии, применяются для наддува баков с компонентами топлива при наличии ТНА или для подачи топлива в камеру сгорания без ТНА, для систем командного управления давлением и систем с воздушным автопилотом.

Диапазон расходов по воздуху от 4 до 120 г/с при начальном давлении на входе £ 400 кгс/см 2 . Регулируемое давление от 2 кгс/см 2 до 50 кгс/см 2 .

Основным параметром системы регулирования, помимо точности поддержания давления или расхода, является динамическая устойчивость системы регулирования при высоких энергетических характеристиках двигателя, заданных условиями выхода на режим и длительности работы. Теоретически динамическую устойчивость систем проверяют на моделях, имитирующих двигатель. Окончательная динамическая устойчивость системы проверяется в составе работающего двигателя или двигательной установки. Отработка каждой системы требует значительных средств и времени.

Суммарное количество агрегатов регулирования товарных двигателей, разработанных в КБхиммаш за 50 лет составляет 320 наименований.

Сегодня современные ЖРД представляют собой сложнейшую систему, которая обеспечивает не только необходимый тяговый и удельный импульсы, но и дросселирование тяги (многорежимность), управление вектором тяги, управляемый запуск, работу и останов двигателя в определенном временном интервале, обеспечивает функционирование многих агрегатов ракеты. Исходя из сложности поставленных задач современная двигательная установка содержит до 6 агрегатов регулирования и до 20 агрегатов автоматики.

Назначение агрегатов автоматики, различные конструкции клапанов, состоит в том, чтобы обеспечить подачу компонентов топлива в двигатель, камеру сгорания, ТНА, газогенератор при запуске и отсечку компонентов при останове двигателя, обеспечить дренирование необходимых полостей двигателя в паузах между включениями и после останова, а также обеспечить длительное хранение заправленного ДУ без нарушения герметичности.

Заправочные горловины и клапана входа

Для заправки изделий компонентами топлива разработаны горловины, которые в настоящее время эксплуатируются на различных изделиях отрасли.

Для ЖРД отработаны многоразовые и одноразовые клапаны входа, которые обеспечивают длительное хранение компонентов заправленного изделия и при срабатывании обеспечивают подачу компонентов топлива в ЖРД.

Пускоотсечные клапаны

Для выполнения различных условий работы ЖРД и ДУ разработаны многофункциональные пускоотсечные клапаны, предохранительные клапаны с высокой точностью настройки от 2 кгс/см 2 до 50 кгс/см 2 , обратные клапаны и редукционные клапаны.

Пневмогидроузлы

Для подачи компонентов топлива иди газа к потребителю разработаны: пневмоузлы – ЭПК прямого и непрямого действия, гидроузлы – ЭЖК, которые по электрической команде осуществляют подачу или прекращение подачи топлива в ЖРД; газовые дроссели для подачи газа на рулевые сопла ДУ.

Пироузлы

За период с 1959 года. По настоящее время были разработаны различные модификации пусковых и отсечных клапанов, предназначенный для подачи и отсечки рабочего тела в жидкостных или газовых магистралях ЖРД и работающих в широком диапазоне давлений и температур. Пироклапаны установлены практически во все изделия КБхиммаш и отличаются высокой степенью надёжности и герметичности, как до срабатывания за счёт оригинальной конструкции запорного органа, выполненного в виде полого стакана со срезаемым дном, так и после срабатывания, которая обеспечивается конической пробкой с канавками (ёрш).

Многие конструкции пусковых и отсечных пироклапанов защищены авторскими свидетельствами и патентами.

В двигателях КБхиммаш с ограниченным числом включений до 6 широко применяются пороховые и пиротехнические устройства, а именно:

  • пусковые камеры для начальной раскрутки ТНА;
  • пироузлы для дистанционного приведения в действие различных клапанов (взведение, пуск, останов), для вскрытия сопловых заглушек, для дистанционного зажигания других пороховых узлов;
  • устройства для зажигания несамовоспламеняющихся компонентов топлива (например Н 2 + О 2 );
  • узлы, используемые для замедления импульса (пирочасы).

Отличительной особенностью пиротехнических узлов является:

  • компактность и простота по сравнению с жидкостными, электропневматическими и механическими источниками энергии;
  • высокая удельная мощность;
  • постоянная готовность к работе;
  • быстродействие (миллисекунды);
  • длительный срок службы (до 30 лет).

Для различных двигателей с турбонасосной системой подачи тягой от 200 до 60000 кгс на предприятии разработано и сдано в серийное производство около 50-и типов высоконапорных ТНА со сверхвысокой всасывающей способностью, использующих в качестве рабочих жидкостей высококипящие и криогенные компоненты топлива, с напорами от 5 до 60 МПа, расходами от 0,15 до 150 кг/сек, оборотами до 60000 об/мин и коэффициентами С кр от 4000 до 10000.

Многие конструкторско-технологические решения, заложенные в конструкции ТНА, являются оригинальными и приоритетными. К ним относятся:

Завершающим звеном механизма газораспределения является клапанная группа, которая включает в себя клапан, пружину, детали крепления клапана и пружины, направляющую втулку и седло клапана.

Клапанная группа работает при больших механических и тепловых нагрузках. Наиболее нагруженным является сопряжение «клапан-седло». Эти детали подвергаются наибольшим ударным воздействиям при посадке клапана в седло, и работают в условиях высоких температур.

Сопряжение «клапан-седло-направляющая втулка» работает при недостаточном смазывании и высокой скорости перемещения клапана, что вызывает их интенсивное изнашивание.

Исходя из условий, в которых работают детали этой группы ГРМ, к клапанной группе предъявляются следующие требования:

  • герметичное закрытие клапанов;
  • малое сопротивление рабочей смеси и отработавшим газам при впуске и выпуске (хорошая обтекаемость);
  • минимальная масса деталей;
  • высокая прочность и жесткость;
  • высокая тепловая стойкость;
  • эффективный отвод тепла от клапана (особенно для выпускного);
  • высокая износостойкость (особенно в сопряжении «втулка-клапан»);
  • высокая коррозийная стойкость в сопряжении «седло-клапан».

Клапаны

Клапаны открывают и закрывают впускные и выпускные отверстия в головке блока цилиндров. Основные элементы клапана: головка 12 и стержень 9 (рис. 1). Головку клапана иногда называют тарелкой клапана.
Плавный переход от головки к стержню снижает сопротивление потоку газов при их истечении через газообменные отверстия. Поскольку отработавшие газы удаляются через выпускной клапан при значительном давлении, головку этого клапана обычно выполняют меньшего диаметра, чему головку впускного клапана.
Температура головки выпускного клапана бензиновых двигателей достигает 800…900 ˚С, а в дизельных двигателях – 500…700 ˚С.
Температурная нагрузка на головки впускных клапанов значительно ниже, тем не менее она приводит к нагреву тарелки клапана до 300 ˚С.

Поэтому для изготовления выпускных клапанов применяются жаропрочные сплавы и материалы, в качестве которых обычно используют жаропрочные стали с большим содержанием легирующих присадок. В целях экономии дорогостоящих жаростойких материалов выпускные клапаны изготовляют из двух частей. При этом для головки используется жаростойкий материал, а для стержня – углеродистые стали.
Головка и стержень в данном случае соединяются между собой стыковой сваркой.

Для повышения коррозийной стойкости и уменьшения изнашивания в выпускных клапанах рабочие поверхности фаски, а в некоторых случаях и поверхность головки со стороны цилиндра наплавляют слоем твердого сплава толщиной 1,5…2,5 мм (рис. 1).

Так как впускные клапаны омываются свежим зарядом и находятся в более легких температурных условиях, к материалу впускных клапанов предъявляются менее жесткие требования и для их изготовления используются хромистые и хромоникелевые среднеуглеродистые стали.

Обтекаемость клапана, работоспособность его фасок во многом зависит от формы головки. Для впускных клапанов чаще используют головки плоской формы (см. рис. 1 и 2), отличающиеся простотой конструкции и достаточной жесткостью. В форсированных двигателях иногда применяют впускные клапаны с вогнутыми головками (см. рис. 1, в). Такие клапаны имеют меньшую массу, чем клапаны с плоской головкой и их движение вызывает меньшие инерционные нагрузки.

Головки выпускных клапанов выполняются или плоскими (рис. 1, 2 и 3, г), или выпуклыми (рис. 3, б). Выпуклая форма головки способствует улучшению обтекаемости клапана со стороны цилиндра и повышению его жесткости, но вместе с тем увеличивается и масса клапана, что отрицательно сказывается на его инерционности.

Сопряжение между тарелкой (головкой) клапана и седлом осуществляется по фаске – специальному пояску на боковой поверхности головки. Угол наклона фаски у впускных клапанов для большинства двигателей составляет 45˚, а у выпускных – 45 и 30˚.
В процессе изготовления клапанов фаски головок шлифуют, а при установке на двигатель притирают к седлу. Ширина притертого пояска фаски для выпускных клапанов должна быть не менее 0,8 мм; для впускных клапанов допускается более узкий поясок, который, тем не менее, не должен прерываться по периметру окружности фаски.
Для обеспечения надежного контакта между клапаном и седлом по наружной кромке фаски клапана угол фаски клапана делают на 0,5…1˚ меньше угла фаски седла.

Коррозийный и механический износ фасок на клапане и седле резко снижает эффективность работы двигателя. На фасках выпускных клапанов в процессе работы постепенно откладывается нагар, который тоже препятствует герметичному закрыванию выпускного отверстия. Для предотвращения образования нагара на фасках выпускных клапанов и повышения их долговечности, в некоторых двигателях выпускной клапан в процессе работы принудительно проворачивается с помощью специального механизма (см. рис. 1, поз. 5).

Механизм принудительного вращения клапана (рис. 4) состоит из неподвижного корпуса 3, расположенных в углублениях этого корпуса пяти шариков 2 с возвратными пружинами 1, конической дисковой пружины 4, опорной тарелки 5 и пружины клапана 7.
Все детали в собранном состоянии скрепляются пружинным кольцом 6.

При открытии клапана от усилия пружины дисковая пружина 4, опирающаяся при закрытом клапане на буртик корпуса 3, деформируется и ложится на шарики 2, которые в это время располагаются в мелкой части углубления корпуса.
Под давлением пружины шарики перекатываются по углублению корпуса в более глубокую часть, поворачивая при этом коническую пружину 4, опорную тарелку 5, пружину клапана и сам клапан вокруг его оси.

После закрытия клапана, когда усилие пружины клапана уменьшается, коническая дисковая пружина 4 возвращается в исходное положение, при этом шарики освобождаются и возвратными пружинами 1 перемещаются в более мелкую часть углубления в корпусе 3, подготавливая механизм к следующему циклу работы.

В двигателях марок «ЗМЗ», «ЯМЗ» возможность проворачивания в процессе работы впускных и выпускных клапанов обеспечивается установкой между опорной тарелкой и сухарями промежуточной втулки (см. рис. 1, поз. 13; рис. 2, поз. 11; рис. 3, поз. 4).

Промежуточные втулки имеют небольшую контактную поверхность с подвижными опорными тарелками пружин, следовательно, трение между этими деталями невелико. Поэтому при открытии клапана вследствие вибрации всех деталей механизма клапан периодически поворачивается.

Ниже фаски головка клапана имеет цилиндрический поясок, который предохраняет ее от обгорания, сохраняет диаметр тарелки клапана при перешлифовке и обеспечивает жесткость головки.

Для предотвращения падения клапана в цилиндр при поломке хвостовика стержня или клапанной пружины, на его стержне может устанавливаться пружинное стопорное кольцо (см. рис. 3, д, поз. 1).

Торцы стержней (пятки клапанов), находящиеся в контакте с коромыслом или кулачком, подвергаются закаливанию. В некоторых двигателях вместо закаливания на концы стержней надеваются колпачки (см. рис. 1, поз. 21) из износостойких материалов и сплавов.

На стержень впускных клапанов надевают резиновый колпачок (см. рис. 3, е, поз. 5), который во время такта впуска препятствует проходу масла в камеру сгорания через зазор между стержнем и направляющей втулкой клапана.

Для предотвращения заклинивания выпускных клапанов в отверстии направляющей втулки при температурном расширении, их стержни вблизи головки выполняют несколько меньшего диаметра, чем по остальной длине.

Для крепления клапанных пружин на конце стержня выполняются одна или две выточки, в которые при сборке входят выступы сухарей 2 (рис. 3, д, е).

Для понижения температуры выпускных клапанов диаметр их головок уменьшают, а диаметр стержня увеличивают. Такое техническое решение позволяет повысить тепловую стойкость клапана, но увеличивает сопротивление потоку выпускаемых газов. Впрочем, поскольку выброс отработавших газов из цилиндра осуществляется под значительным давлением (по сравнению с давлением впуска), то этим недостатком пренебрегают.

Более эффективным является способ принудительного охлаждения выпускных клапанов. Для этого стержень выпускного клапана делают пустотелым (см. рис. 1, а, в) и заполняют металлическим натрием, который имеет низкую температуру плавления (97 ˚С). При работе жидкий натрий, нагреваясь от головки клапана, испаряется, поглощая большое количество теплоты. Поднявшись в верхнюю часть стержня, пары натрия конденсируются и передают теплоту верхней части стержня, которая работает в менее теплонапряженных условиях.

Клапанные пружины

Клапанная пружина должна обеспечивать плотную посадку клапана в седло. Она работает в условиях резко меняющихся динамических нагрузок, способных вызвать резонанс и последующую поломку пружины.
Чаще всего применяют цилиндрические винтовые пружины с постоянным шагом витков.
Для предотвращения резонансных явлений могут применяться пружины с переменным шагом, конические пружины и двойные пружины. При использовании двойных пружин возрастает надежность работы ГРМ и уменьшается общий размер пружин.
Направление витков внутренней и внешней пружин выполняют разным, чтобы исключить резонанс и, в случае поломки одной из пружин, предотвратить попадание обломков между витками второй пружины.

Клапанные пружины изготавливают навивкой проволоки из пружинной стали. После навивки пружины подвергаются термической обработке (закалка и отпуск), а для повышения усталостной прочности обдуваются стальной дробью.

Концевые витки пружин шлифуются для получения плоской кольцевой опорной поверхности. Для повышения коррозионной стойкости пружины оксидируют, оцинковывают и кадмируют.

Пружины опираются на головку блока цилиндров через специальные неподвижные тарелки (см. рис. 2, поз. 4), которые штампуются, как и верхние подвижные тарелки из малоуглеродистой стали. Верхняя тарелка пружины фиксируется на клапане с помощью сухарей.

Направляющие втулки клапанов

Направляющая втулка обеспечивает перемещение клапана и отвод теплоты от его стрежня во время работы. При этом нижний конец самой втулки (особенно выпускного клапана) омывается горячими газами. При недостаточном поступлении смазочного материала в зазоры между стержнем клапана и внутренней поверхностью втулки трение между этими деталями приближается к полусухому.
По этой причине к материалу направляющих втулок предъявляются требования высокой износостойкости, достаточной жаростойкости и хорошей теплопроводности. Кроме того, он должен обладать высокими антифрикционными качествами. Этим требованиям удовлетворяют перлитные серые чугуны, алюминиевые бронзы, спекаемая хромистая или хромоникелевая керамика. Пористая структура данных материалов хорошо удерживает смазочный материал.

Для фиксации в головке блока цилиндров втулки выполняются с выточкой под пружинное кольцо (см. рис. 3, а, поз. 1) или с наружными заплечиками.

Зазор между направляющей втулкой и стержнем клапана для впускных клапанов устанавливается меньше, чем для выпускных, из-за разной температуры нагрева. Для предотвращения заклинивания клапана во втулке при высокой температуре и перекоса (в приводе клапана непосредственно от распределительного вала) нижнюю внутреннюю поверхность втулки выполняют конусной (см. рис. 3, г) или уменьшают диаметр стержня клапана у головки (см. рис. 1, б).

Седла клапанов

Седло клапана обеспечивает долговечность контактной зоны клапана с головкой блока цилиндров. В головках из алюминиевого сплава используют стальные седла, а в чугунных головках они растачиваются непосредственно в теле (см. рис. 2, а). Для изготовления вставных седел используют специальные легированные чугуны или жаростойкие стали. Для повышения износостойкости фаски седел выпускных клапанов наплавляются слоем твердого сплава (см. рис. 1, поз. 18).

Седло представляет собой кольцо с цилиндрической или конической наружной поверхностью. Крепится седло в головке с натягом при запрессовке или путем расчеканивания головки (см. рис. 3, к). Стальные седла могут крепиться развальцовкой верхней части седла (см. рис. 3, л). При креплении седел запрессовкой на их наружной поверхности часто выполняются кольцевые проточки (см. рис. 3, з, и), которые в процессе запрессовки заполняются металлом головки.

Цилиндрические седла вставляются до упора, а конические – с небольшим торцевым зазором.

Для получения надежного уплотнения поясок седла шириной около 2 мм выполняют с переменным углом (см. рис. 3, ж).

УНИКАЛЬНЫЕ ОСОБЕННОСТИ ПРОЕКТА, УДОБСТВО В РАБОТЕ, НАДЕЖНОСТЬ СИСТЕМЫ

Рис. 8. Компрессорная станция, входящая в состав АГНКС

Эксплуатирующим персоналом было отмечено удобство реализованного интерфейса, высокая доступность основной информации о ходе технологического процесса, а также простота определения причин возникновения нештатных ситуаций. В ходе заводских испытаний, ПНР и эксплуатации (более 6 месяцев на момент написания статьи) отказов системы управления (ПЛК, система ввода/вывода, панель оператора) или сбоев в работе, приведших к необходимости остановки технологического процесса, зафиксировано не было. Решение показало себя как надёжное, пригодное для использования в системах управления сложным технологическим оборудованием для ответственных применений. В связи с этим предполагается внедрение рассматриваемой системы в серийное производство в составе комплекса технологического оборудования АГНКС.

Признаки отказа механизма EGR

На старых автомобилях, выпущенных до 2000 года, отказ данного устройства может никак себя не проявлять. На более современных авто отказ EGR можно вычислить по следующим признакам:

  • Загорается сигнализатор Check Engine;
  • «Плавают» холостые обороты;
  • Расход топлива возрастает;
  • Двигатель теряет былую мощность или, наоборот, становится слишком резвым;
  • Снижается приемистость двигателя при разгоне;
  • Становится заметной детонация двигателя;
  • Слышен шум из двигателя, которого раньше не было.

На компьютерной диагностике или при помощи автосканера легко определяется отказ механизма EGR.

Гидрозамок от компании «Гидронт»

Система Fan drive имеет ряд преимуществ перед классическими системами привода вентилятора:

  • Возможность расположения радиатора охлаждения в отдалении от двигателя
  • Реверсирование вращения вентилятора для продувки радиатора от грязи
  • Высокий момент на крыльчатке при относительно небольших габаритах мотора
  • Управление скоростью вращения вентилятора в зависимости от температуры масла в автоматическом режиме
  • Поддержание постоянной скорости вращения вентилятора вне зависимости от оборотов двигателя

Компания ООО «Гидронт» может вам предложить следующие виды системы привода вентилятора:

  1. Шестеренный насос & Шестеренный мотор – постоянное соотношение скоростей вращения
  2. Шестеренный насос & Двухскоростной шестеренный мотор
  3. Шестеренный насос & Шестеренный мотор с регулируемой скоростью
  4. Шестеренный насос & Шестеренный мотор с регулируемой скоростью плюс функция реверса
  5. Поршневой насос & Шестеренный мотор (аксиально-поршневой мотор)

Рассмотрим подробнее каждую из систем:

1. Шестеренный насос & Шестеренный мотор – постоянное соотношение скоростей вращения.

Скорость вращения вентилятора пропорциональна оборотам двигателя, возможны 4 модификации мотора.

1.1. мотор без дополнительных клапанов

  • низкая стоимость
  • простая система

1.2. мотор с антикавитационным клапаном

  • высокая скорость
  • мотор защищен от любых аварийных остановок системы

1.3. мотор с антикавитационным клапаном и предохранительным клапаном с фиксированной настройкой

  • высокая скорость
  • длительный срок службы
  • мотор защищен от любых пиков давления и от аварийных остановок

1.4. мотор с антикавитационным клапаном и предохранительным клапаном с регулируемой настройкой

  • высокая скорость
  • большой размер крыльчатки вентилятора
  • мотор защищен от любых пиков давления и от аварийных остановок
  • система оптимизирована благодаря регулируемому клапану

2.Шестеренный насос & Двухскоростной шестеренный мотор
2.1. В состав мотора входит: электромагнитный клапан, нормально закрытый; предохранительный клапан с фиксированной настройкой и антикавитационный клапан.

  • высокая скорость
  • большой размер крыльчатки вентилятора
  • мотор защищен от любых пиков давления и от аварийных остановок
  • дискретный электромагнитный клапан (12/24 В) управляет двумя скоростями мотора. Нет промежуточных скоростей вращения.

2.2 Вторая скорость достигается путем использования дросселя с различным внутренним диаметром.

3. Шестеренный насос & Шестеренный мотор с регулируемой скоростью

3.1. В состав мотора входит: пропорционального предохранительного клапана и антикавитационного клапана.
3.2. Скорость вращения мотора не зависит от числа оборотов двигателя.

  • высокая скорость
  • длительный срок службы
  • мотор защищен от любых пиков давления и от аварийных остановок
  • точный контроль температуры рабочей жидкости
  • максимальная скорость вращения вентилятора в случае отказа системы управления

3.3. При использовании электронного блока CED110 возможно настроить и оптимизировать цикл работы вентилятора.

4. Шестеренный насос & Шестеренный мотор с регулируемой скоростью плюс функция реверса
4.1. В состав мотора входит: дискретного электромагнитного клапана (4-х линейного, 2-х позиционного), пропорционального предохранительного клапана и антикавитационного клапана.

  • высокая скорость
  • длительный срок службы
  • мотор защищен от любых пиков давления и от аварийных остановок
  • точный контроль температуры рабочей жидкости
  • реверсивная функция привода вентилятора позволяет осуществлять чистку радиатора в автоматическом режиме
  • максимальная скорость вращения вентилятора в случае отказа системы управления

4.2. При использовании электронного блока CED110 возможно настроить и оптимизировать цикл работы вентилятора.

5. Поршневой насос & Шестеренный мотор (аксиально-поршневой мотор)

  • Насос серии MVP – аксиально поршневой регулируемый насос. Шестеренный мотор с функцией реверса.
  • Скорость вращения мотора регулируется изменением рабочего объема насоса без потерь мощности.
  • При использовании электронного блока CED110 возможно настроить и оптимизировать цикл работы вентилятора.

Кроме системы fan drive мы можем предложить различные датчики и электронную систему управления для управления системой охлаждения в автоматическом режиме.

голоса
Рейтинг статьи
Читать еще:  Датчик температуры двигателя hr15
Ссылка на основную публикацию
Adblock
detector