0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое система впрыска топлива в электронном двигателе

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

  1. Краткая история появления
  2. Виды систем впрыска бензиновых двигателей
  3. Моновпрыск, или центральный впрыск
  4. Распределенный впрыск (MPI)
  5. Непосредственный впрыск топлива (GDI)

Систем питания с впрыском топлива, включая бензонасосы и фильтры

Конструкторские и исследовательские работы над системами впрыска топлива начались после второй мировой войны. Системы того времени являлись также оставались механическими.

Лишь в 60-е годы прошлого столетия появились первые электронные системы впрыска которые в настоящее время доминируют на автомобилях.

Электронные системы впрыска SPFI (Single Point Fuel Ijection)

Электронные системы впрыска — Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом, электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.

Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название мокрый впрыск.

Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.

CFI (Continuous Fuel Injection) — Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.

Мощность установленного на автомобиле двигателя с впрыском топлива, как и мощность карбюраторного двигателя, регулируется изменением положения дроссельной заслонки, связанной с педалью акселератора. Если у карбюраторного двигателя при этом изменяется объем поступившей в цилиндры топливовоздушной смеси, то дроссельная заслонка двигателя с впрыском топлива регулирует непосредственно только объем воздуха, состав же смеси зависит от массы топлива, впрыскиваемого топливоподающей аппаратурой.

Принцип работы систем питания

Принцип работы систем питания с впрыском топлива основана на поддержании состава смеси в заданных пределах с помощью автоматического регулятора, дозирующего топливо в точном соответствии с количеством поступившего воздуха. Система впрыска позволяет точно соизмерять количество подаваемого топлива с режимом и нагрузкой двигателя, гибко реагировать на изменение условий эксплуатации автомобиля.

Требования к составу смеси на различных режимах работы двигателя с впрыском топлива в основном аналогичные требованиям, предъявляемым к карбюраторным системам питания автомобильных двигателей, учитываются при проектировании систем регулирования автомобильных двигателей.

Если 20…30 лет назад к системам питания предъявлялись требования касающиеся лишь точного регулирования состава смеси на всех режимах работы двигателя и высокой экономичности, то на сегодняшний день определяющим является требование по низкой токсичности отработавших газов (нормы, на которые постоянно ужесточаются).

К современному автомобильному бензиновому двигателю предъявляют следующие требования: – точное регулирование состава смеси на всех режимах работы двигателя; – высокая экономичность (..5 л/100 км при литраже двигателя до 1,2 л и ..6 л /100 км при литраже до 2 л); – выполнение норм по токсичности (в различных государствах действуют разные нормы, в Европе – EURO 1, 2, 3, 4, в США – в каждом штате свои нормы, но самые жесткие нормы штата Калифорния).

Выполнение этих требований, особенно по экономичности и токсичности, возможно только при использовании цифровых электронных систем впрыска топлива.

Системы питания с впрыскиванием бензина классифицируют по следующим признакам: по месту подвода топлива: – центральный (одноточечный) впрыск наиболее простой и оправдывает применение при либеральных нормах токсичности; – распределенный (форсунки у каждого впускного клапана) позволяет исключить неравномерность дозирования топлива между цилиндрами; – непосредственный (форсунки в головке цилиндров) позволяет организовать в цилиндре двигателя расслоение заряда, что способствует сгоранию бедных смесей; по способу подачи топлива: – с непрерывным впрыскиванием (в системах Бош К-Джетроник и Мультек) – прерывистым впрыскиванием (в системе Бош Л-Джетроник), которое бывает: – фазированным (подача бензина только на впуске); – не фазированным (подача на каждом обороте коленчатого вала).

Системы впрыска Бош Джетроник

Сначала компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600 в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroen, Saab и Volvo.

В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.

Начало карьеры системы распределенного впрыска топлива для бензиновых двигателей, которую разработавшая ее фирма Bosch назвала KE-Jetronic, пришлось на начало 1980-х годов. Система проектировалась как переходная от механической системы впрыска K-Jetronic, которую КЕ во многом повторяла по исполнительной части, к электронным и поэтому не должна была просуществовать долго.

Автомобили с системой впрыска KE-jetronic выпускались с 1982 по 1993 год такими автопроизводителями, как Mercedes, Ford, AUDI, Volkswagen. Подобные машины достаточно широко распространены и в России. Вследствие того, что производитель и разработчик KE-jetronic фирма Bosch давала гарантию на свои компоненты на 8 лет, даже самые свежие автомобили с этой системой имеют проблемы с впрыском.

Система KE-jetronic

KE-jetronic является механическим системой впрыска с электронной коррекцией. Поэтому для правильного понимания работы КЕ необходимо в первую очередь разобраться с механической частью, а именно с давлениями топлива в разных частях дозатора и иметь начальное представление о теории регулирования.

Читать еще:  Ауди 100 дизель температура двигателя

Первым в цепочке узлов, составляющих KE-Jetronic, значится электрический топливный насос. В зависимости от модификации системы он может быть погружным, то есть размещенным непосредственно в бензобаке, или подвесным, расположенным вне бака. Топливный насос состоит из насосной части роликового или шестеренного типа и предназначенного для ее привода электродвигателя. Забрав из бака бензин, насос под давлением направляет его в топливный фильтр.

Система подачи топлива включает в себя: — Электрический бензонасос; — Аккумулятор топлива; — Фильтр тонкой очистки; — Регулятор системного давления; — Форсунки впрыска топлива.

Электрический бензонасос

Электрический бензонасос качает бензин из топливного бака под давлением более 5 Бар сначала в аккумулятор топлива, а потом через фильтр тонкой очистки в Распределитель топлива. Из распределителя бензин подается к топливным форсункам. Форсунки постоянно впрыскивают бензин во впускные каналы двигателя. Когда впускные клапана открываются, топливно-воздушная смесь засасывается в цилиндр. Регулятор системного давления поддерживает постоянную величину давления в системе и сбрасывает излишки бензина обратно в топливный бак. Вследствие постоянной циркуляции в системе подачи топлива, на впрыск всегда подается холодное (не подогретое работающим двигателем) топливо. Это свойство позволяет избежать появления пузырьков пара в бензине и гарантирует легкий пуск горячего двигателя.

Неисправности насосной части

Детали насосной части при работе трутся друг о друга. Где трение, там и износ. А где износ, там увеличение зазоров и появление утечек. В результате бензонасос перестает развивать давление, необходимое для нормальной работы системы.

Другая группа неисправностей – электрические. Изнашиваются щетки и коллектор электродвигателя. Случается, что из-за увеличившихся люфтов еще вполне работоспособные щетки начинают зависать – насос с такими щетками после удара по корпусу способен заработать снова, но вот надолго ли?

Уязвимое место – сетчатый фильтр топливозаборника перед насосом. На нем, как в пылесосе, собирается грязь, которая не успела прочно прилипнуть к стенкам бензобака. Если автомобиль после разгона свыше 60 км/ч начинает дергаться, первое, что нужно сделать, – залезть в бак и проверить состояние сетки. Как правило, оно оставляет желать лучшего. Некоторые автовладельцы, столкнувшись с полным забиванием топливозаборника грязью, выбрасывают сетку или пробивают ее шилом. Лучше все-таки попытаться ее очистить, а затем по мере возможности промыть топливный бак.

Внимание: В большинстве случаев все топливные насосы меняются целиком в сборе.

Supauto.RU — это интернет продажи запчастей для иномарок. Для получения подробной информации обращайтесь по телефону.

Москва
Воронеж
Нижний Новгород
Новосибирск
Ростов
Самара
Челябинск

Непосредственный впрыск — системы с внутренним смесеобразованием

В таких системах, называемых системами с непосредственным впрыском (DI), топливные форсунки с электромагнитным приводом, размещенные в каждом цилиндре, впрыскивают топливо непосредственно в камеру сгорания. Смесеобразование происходит внутри цилиндра. Для обеспечения эффективного сгорания смеси существенную роль играет процесс распыления выходящего из форсунки топлива.

Во впускной трубопровод двигателя с непосредственным впрыском топлива, в отличие от двигателя с внешним смесеобразованием, подается исключительно воздух. Таким образом, исключается попадание топлива на стенки впускного трубопровода.

Если при внешнем смесеобразовании в процессе сгорания обычно присутствует однородная топливовоздушная смесь, то при внутреннем смесеобразовании двигатель может работать как с однородной, так и с неоднородной смесью.

Работа двигателя при послойном распределении смеси

Смесь при послойном распределении заряда воспламеняется только в зоне вокруг свечи зажигания. В остальных частях камеры сгорания содержатся свежая смесь и остаточные отработавшие газы двигателя без следов несгоревшего топлива. На режимах холостого хода и при малой нагрузке таким образом обеспечивается работа на обедненной смеси, что приводит к снижению расхода топлива.

Работа двигателя при наличии однородной смеси

Однородная смеси занимает полностью объем камеры сгорания (как и при внешнем смесеобразовании), и весь заряд свежего воздуха, поступившего в камеру, участвует в процессе сгорания. Поэтому этот способ образования смеси применяется в условиях работы двигателя при полной и средней нагрузках.

Недостатки

Основные недостатки двигателей с блоком управления по сравнению с карбюраторными:

  • Высокая стоимость узлов,
  • Низкая ремонтопригодность элементов,
  • Высокие требования к фракционному составу топлива,
  • Необходимость в специализированном персонале и оборудовании для диагностики, обслуживания и ремонта, высокая стоимость ремонта.
  • Зависимость от электропитания и критически важное требование к постоянному наличию напряжения питания
  • Уязвимость электронной системы от атомного излучения

Как работает инжектор и система впрыска топлива?

Карбюратор был гениальным изобретением сам по себе. Двигатель автомобиля имеет 4 цикла, и один из них называется циклом всасывания. Если Вы читали нашу статью о том, как работает двигатель внутреннего сгорания, то Вы понимаете, о чём идёт речь. Проще говоря, двигатель засасывает (создавая существенный вакуум внутри цилиндра), и когда это происходит, карбюратор приходил на помощь, чтобы подать нужное количество бензина и воздуха в двигатель. Несмотря на всю легендарность системы, она не была лишена недостатков, ей не хватало точности количества подаваемого бензина, его необходимо было постоянно регулировать, чего не требуется современной системе впрыска топлива под давлением. Вы можете более подробно ознакомиться с принципом работы карбюратора.

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника — это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ — именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля — это его двигатель, то его мозг — это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном — проследим путь бензина от бензобака до двигателя — это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Читать еще:  Шевроле лачетти что может стучать в двигателе

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор. Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском. Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.

Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа «регулятором подачи воздуха» в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем — он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива — именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины — нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости — ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

Система впрыска топлива бензиновых двигателей: слаженный симбиоз технологий

Итак, как мы уже сказали комбинированная система впрыска топлива бензиновых двигателей – это симбиоз распределённого и непосредственного впрыска, поэтому в её составе можно найти элементы от обеих технологий, а именно:

  • топливную рампу высокого давления со своими форсунками;
  • топливную рампу низкого давления с форсунками;
  • топливный насос высокого давления (ТНВД);
  • электронный блок управления (ЭБУ).

В общих чертах работает всё следующим образом. Как и всегда, руководит процессом подачи топлива и активации той или иной подсистемы форсунок электронный блок управления двигателем.

В его функции входит не только правильно определить момент смены режима работы силового агрегата, но и рассчитать дозировку топлива, подходящий состав смеси и время инжекции.

Делает выводы о происходящем ЭБУ на основе алгоритмов, заложенных в его память, а также анализируя информацию, поступающую от многочисленных датчиков.

Также стоит отметить, что ТНВД запитывает одновременно и контур форсунок непосредственного впрыска, которому требуется высокое давление вплоть до 20 МПа, и контур распределённого впрыска, где напор бензина в разы меньше.

Теперь о том, в каких случая включаются те или иные форсунки. Инженеры концерна Volkswagen решили, что оптимальные показатели экологичности и эффективности у элементов, работающих по технологии непосредственной инжекции, будут при запуске и прогреве мотора, а также в моменты максимальной нагрузки на двигатель — когда Вы нажали педаль «газа» в пол.

Причём и тут возможны различные варианты работы системы. Так, к примеру, при холодном агрегате обеспечивается один впрыск за цикл (два оборота коленвала) в каждый цилиндр и происходит это на такте впуска, а при полной мощности система делает уже два впрыска — один на впуске, второй на сжатии.

Когда мотор не сильно нагружен, а это, как правило, относится к неспешной езде в городе, лучше использовать распределённую систему.

В этом режиме форсунки в цилиндрах также периодически включаются, но исключительно в профилактических целях – чтобы их сопла не засорялись продуктами горения.

Системы прямого впрыска топлива для бензиновых двигателей

В системах прямого впрыска топлива, в отли­чие от систем с впрыском топлива во впуск­ной трубопровод, в камеру сгорания через впускные клапаны поступает чистый воздух. Только после этого топливо впрыскивается в камеру сгорания форсункой (топливная фор­сунка высокого давления), расположенной непосредственно в головке блока цилиндров (внутреннее смесеобразование, см. рис. «Принцип действия системы прямого впрыска топлива» ). При этом существуют два основных режима работы системы. В случае впрыска топлива во время такта впуска имеет место режим работы с однородной смесью, а при впрыске топлива во время такта сжатия — режим послойного распределения смеси. Существуют также раз­личные специальные режимы, представляю­щие собой комбинацию двух основных режи­мов или их небольшие вариации.

Читать еще:  Что такое проверка качества двигателя

При работе в режиме послойного распреде­ления заряда количество воздуха не ограничи­вается; топливно-воздушная смесь — бедная. Избыточное количество воздуха в отработавших газах мешает преобразованию оксидов азота в трехкомпонентном каталитическом нейтрализа­торе. Поэтому для этих систем прямого впрыска топлива требуется очистка отработавших газов при помощи дополнительного каталитического нейтрализатора NOx аккумуляторного типа. По этой причине большинство систем прямого впрыска топлива, представленных в настоящее время на рынке, работают исключительно в ре­жиме образования однородной смеси.

Работа двигателя при наличии однородной смеси

При работе в режиме образования однородной смеси, процесс смесеобразования подобен про­цессу в системе с впрыском топлива во впускной трубопровод. Смесь имеет стехиометрический состав (λ = 1). Однако, в отношении смесеобра­зования имеются некоторые различия. В частно­сти, отсутствует поток в области расположения впускного клапана, способствующий смесео­бразованию, и для самого смесеобразования имеется значительно меньше времени. В то время как в случае системы с впрыском топлива во впускной трубопровод впрыск может произ­водиться в течение поворота коленчатого вала на 720° (синхронно с тактами впуска), в случае систем с прямым впрыском топлива имеется окно для впрыска, соответствующее углу пово­рота коленчатого вала всего лишь 180°. Впрыск топлива разрешен только во время такта впуска. Это обусловлено тем, что перед этим выпускные клапаны открыты, и в противном случае несго­ревшее топливо будет выходить в систему выпу­ска отработавших газов. Это вызвало бы высо­кое содержание углеводородов в отработавших газах и проблемы в работе каталитического нейтрализатора. Для обеспечения подачи до­статочного количества топлива в течение этого ограниченного периода времени необходимо увеличить поток топлива через форсунку. Это достигается в основном за счет увеличения дав­ления топлива. Увеличение давления дает до­полнительное преимущество, заключающееся в повышении уровня турбулентности в камере сгорания, что в свою очередь способствует процессу смесеобразования. Поэтому топливо и воздух могут быть полностью перемешаны, несмотря на короткий отпущенный для этого период времени.

Работа двигателя при послойном распределении смеси

Что касается работы с послойным распре­делением смеси, следует провести различия между разными способами сжигания топлива. Эти способы имеют одну общую черту, заклю­чающуюся в том, что все они направлены на создание послойного распределения смеси. Это означает, что вместо поддержания стехиомерического состава смеси за счет из­менения положения дроссельной заслонки в камеру сгорания поступает полный поток воздуха, но только часть его смешивается с топливом перед подачей смеси к свече зажи­гания. Остальная часть свежего воздуха окру­жает послойный заряд топлива. В дополнение к охлаждающему эффекту, снижающему склонность к детонации, отсутствие дроссе­лирования также предлагает значительный потенциал снижения расхода топлива.

Система с направлением струи топлива на днище поршня

В системе с направлением струи топлива на днище поршня топливо впрыскивается в ка­меру сгорания сбоку (см. рис. а, «Смесеобразование для систем прямого впрыска топлива» ). Выемка в днище поршня отклоняет струю топлива в на­правлении свечи зажигания. Смесеобразова­ние происходит на пути от форсунки к свече за­жигания поскольку время смесеобразования в этом случае еще меньше, давление топлива для этой системы должно быть еще выше, чем для работы с однородной смесью Повышение давления топлива сокращает время впрыска и улучшает условия смесеобразования за счет усиления отражения импульсов давления.

К недостаткам этой системы можно отнести конденсацию топлива на днище поршня, вызы­вающую увеличение содержания НС в отработавших газах. Поскольку время смесеобразова­ния невелико, при высоких нагрузках двигателя облако заряда смеси обычно содержит зоны богатой смеси, что увеличивает вероятность от­ложения нагара. При низких нагрузках импульс потока топлива, служащий в качестве средства транспортировки послойного заряда топлива к свече зажигания, имеет низкую энергию. Поэ­тому обычно поток в этом случае должен быть ограничен, чтобы количество топлива соответ­ствовало более низкой плотности воздуха.

Система с направлением струи топлива в поток завихрения воздуха

В основном, система с направлением струи топлива в поток завихрения воздуха анало­гична системе с направлением струи топлива на днище поршня. Основное различие состоит в том, что облако топлива не взаимодействует непосредственно с выемкой в днище поршня. Вместо этого оно перемещается в поток за­вихрения воздуха (см. рис. Ь, «Смесеобразование для систем прямого впрыска топлива» ). Это решает проблему конденсации топлива на выемке поршня. Однако система с направлением струи топлива в поток завихрения воздуха ме­нее стабильна по сравнению с системой с на­правлением струи на днище, в связи с тем, что обеспечить точную повторяемость распреде­ления потока воздуха весьма затруднительно.

Зачастую фактический процесс сгорания топлива, в зависимости от рабочей точки Двигателя, представляет собой некоторую комбинацию двух вышеописанных режимов.

Система с прямым направлением струи топлива

Система с прямым направлением струи топлива отличается от двух вышеописанных систем ме­стом установки форсунки. Форсунка установ­лена по центру вверху и впрыскивает топливо в камеру сгорания в вертикальном направлении (СМ. рис. с, «Смесеобразование для систем прямого впрыска топлива» ). Свеча зажигания находится ря­дом с форсункой. Струя топлива не отклоняется и поджигается сразу же после впрыска. В ре­зультате время смесеобразования очень непро­должительное. Это требует еще более высокого Давления топлива. Такой процесс сгорания то- слива позволяет устранить проблемы конденса­ции топлива на стенках впускного трубопровода, зависимости от потока воздуха и ограничения истока при низких нагрузках. Поэтому он несет в себе самый высокий потенциал снижения расхода топлива. В то же время большую проблему для систем впрыска топлива и зажигания пред­ставляет очень короткое время, доступное для смесеобразования.

Другие режимы работы

В дополнение к режимам работы с однородной смесью и с послойным распределением смеси могут иметь место определенные специальные режимы. К ним относятся «переключение режи­мов» (однородная смесь — послойное распреде­ление заряда), «прогрев каталитического ней­трализатора», «режим защиты от детонации» (режим разделения однородной смеси) и «ре­жим работы на обедненной однородной смеси.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector