0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое сигнализатор диагностики системы управления двигателем

Диагностика

  1. Выполняется чтение блока памяти накопленных ошибок, которые возникают при работе систем с электронным управлением. После того как диагностический сканер выводит список кодов ошибок, которые подлежат анализу диагностом. В большинстве случаев ошибки разделяются на случайные, которые удаляются без дальнейшего проявления и постоянные, которые требуют детального изучения параметров работы конкретной системы.
  2. Производится полная диагностика всех элементов управления той системы, по которой присутствует постоянная ошибка. Последовательная диагностика системы позволяет найти конкретную деталь (датчик, блок, исполнительный механизм) который неисправен.

Компьютерная диагностика двигателя

  • в обязательном порядке проводится при каждом периодическом техническом обслуживании в целях выявить отклонения в работе систем управления двигателем и предотвратить наступление неисправности
  • или при появлении индикации “check engine”, что означает о наличии неисправности или существенных отклонений в параметрах работы систем двигателя.
  • если отсутствует какая-либо индикация, но водитель стал замечать, что двигатель работает неравномерно или плохо заводится, возрос расход топлива, изменилась динамика разгона из-за потери мощности, изменился цвет и запах отработавших газов.

Во время диагностики сканер в среднем анализирует более 200 параметров и сопоставляет их с заводскими настройками. При отклонении каких-либо параметров указывает на конкретную систему, которая работает некорректно.

Компьютерная диагностика АКПП

Следует проводить, если АКПП работает некорректно или водитель начал замечать отклонения от привычных режимов работы при движении автомобиля: появились рывки или пробуксовка при смене передач, удар (толчок) при полной остановке автомобиля, посторонние шумы при движении, масляные пятна под автомобилем после стоянки.

При диагностике считываются коды ошибок блока управления АКПП и двигателя по специальному алгоритму, заданному производителем. После завершения диагностики с большой долей вероятности становится известно какой механизм или электронный блок АКПП неисправен.

Диагностика подвески

Подвеска также постоянно эволюционирует: оснащается пневматическими элементами, датчиками контроля работы исполнительных механизмов, положения кузова для устранения крена и т.п.

Для подвески без электронного управления требуется периодическая проверки геометрии подвески (углов установки колес) в целях предотвращения неравномерного износа покрышек, увода автомобиля от прямолинейного движения на ровной дороге, преждевременного срабатывания АВS и т.п.

ЧТЕНИЕ КОДОВ ОЩИБОК 799.00р.

КОМПЬЮТЕРНАЯ ДИАГНОСТИКА АВТОМОБИЛЯ 1.500Р.

Мы проверим и выдадим протокол по ошибкам электронных блоков управления и рекомендации по дальнейшим действиям.

Время проведения услуги: 30 минут.

Диагностика ходовой части для автомобилей Kia у нас проводится бесплатно.

Ремонт и техническое обслуживание автомобилей

Общие сведения о датчиках ЭСУ автомобилей

Электроника стремительно врывается в конструкцию автомобилей, занимая важное место в управлении работой сложных агрегатов, устройств и систем автомобиля. Благодаря электронным системам управления (ЭСУ) повышается безопасность, экономичность, надежность и комфортабельность эксплуатации автомобильного транспорта, и, что немаловажно, отстранение человека от управления элементами конструкции автомобиля, требующих быстроты и правильность принятия решений и действий.
Электронный мозг автомобиля, как и любой другой компьютер, выполняет эту задачу лучше и быстрее любого человеческого гения.

Для того, чтобы электронный мозг автомобиля мог принять наиболее оптимальный вариант решения текущей или внезапно возникающей задачи, он должен иметь своеобразных осведомителей, выполняющих функции «органов чувств» компьютера.
Такими «осведомителями» в электронной начинке автомобиля являются многочисленные и разнообразные датчики, поставляющие электронному блоку управления («мозгу») информацию о текущем состоянии отдельных параметров автомобиля, элементов его конструкции и систем.

При этом текущее состояние механизмов и систем машины непосредственно может быть оценено только физическими параметрами – температурой, давлением, объемом, массой, положением в пространстве, вибрацией, скоростью и т. п.
Так, например, температура двигателя, частота вращения коленчатого вала и его положение в пространстве или скорость автомобиля – физические параметры, и никакая компьютерная программа не способна определить их существенное значение для анализа и корректировки управляющих сигналов (компьютерных команд).

Электронный блок управления, как и любой компьютер, способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т. п. Поэтому ЭБУ необходимы «переводчики», способные преобразовать физические величины в величины электрические, пригодные для обработки в блоке управления в соответствии с заложенной в него программой.

Датчики являются важнейшими элементами любой электронной системы управления. Они позволяют преобразовывать любой физический параметр машины, механизма, системы или рабочего тела в электрический сигнал, который понятен компьютеру, т. е. электронному блоку управления (ЭБУ).

Датчик – это элемент электронной системы управления, предназначенный для преобразования физических величин, характеризующих работу объекта или системы, в электрические величины, пригодные для обработки электронным блоком управления.

Совокупность датчиков электронной системы обычно называют датчиковой аппаратурой.

Физическими параметрами элемента конструкции или рабочего тела можно назвать температуру, давление, концентрацию, влажность, пространственное положение, объемное или массовое количество воздуха, вибрацию.

Электрические параметры, которыми оперируют датчики для информирования анализирующих и управляющих элементов электронной системы (для автомобилей — ЭБУ) — напряжение, ток, частота.

Конструктивно датчики всегда имеют как минимум две части – чувствительный элемент, воспринимающий входное неэлектрическое воздействие, и преобразователь неэлектрического сигнала от чувствительного элемента в выходной электрический сигнал. При этом выходной сигнал может быть предварительно обработан датчиком (в зависимости от его интеграции), либо передаваться в первозданном виде для анализа в ЭБУ.

Классификация датчиков, используемых в машиностроении и другой технике, в т. ч. электронной, приведена на этой странице.

Требования, предъявляемые к датчикам

К датчикам, используемым в электронных системах управления, предъявляются следующие требования:
— высокая надежность;
— необходимый диапазон измерений;
— статическая характеристика близкая к линейной;
— достаточная чувствительность и стабильность;
— погрешность в пределах, не превышающих влияние на работоспособность системы;
— отсутствие обратного воздействия на измеряемый объект или параметр.

Датчики автомобильных ЭСУ

Как упоминалось выше, любой автомобильный датчик подключаются к блоку управления (ЭБУ) или средствам индикации для передачи сведений (информации) о параметрах контролируемой данным датчиком среды или параметра.

Датчики современных автомобильных электронных систем автоматического управления (ЭСАУ) преобразуют информацию о значениях контролируемых неэлектрических параметров в электрический сигнал – напряжение, ток, частоту, фазу и т. д. Эти сигналы преобразуются в цифровой код в ЭБУ и обрабатываются в соответствии с заложенным в него программным обеспечением.
По результатам обработки сигналов с датчиков электронный блок управления (ЭБУ) управляет через исполнительные механизмы (реле, соленоиды, электродвигатели) объектом — узлом, механизмом, системой или всей машиной.

Так, например, в двигателе автомобиля датчики используются для измерения температур и давлений различных жидких и газовых сред — температуры всасываемого воздуха, абсолютного давления во впускном коллекторе, давления масла, температуры охлаждающей жидкости, давления топлива в магистралях и т. п.
Также практически все современные двигатели внутреннего сгорания (ДВС) автомобилей снабжены датчиками детонации, нагрузки двигателя, содержания кислорода в выхлопных газах и др.

Практически все движущиеся части автомобиля снабжены датчиками скорости или положения, например, датчик скорости автомобиля, положения дроссельной заслонки, положения коленчатого (распределительного) вала, положения и скорости вращения вала в коробке переключения передач (КПП), положения клапана рециркуляции выхлопных газов и др.

В результате развития систем активной безопасности многие автомобили оснащаются не только антиблокировочной системой тормозов, но и более сложной системой управления курсовой устойчивостью и стабильностью движения автомобиля.
Для таких систем кроме датчиков определения скорости вращения колес и давления в тормозных магистралях необходимы датчик скорости вращения автомобиля вокруг вертикальной оси, датчик поперечного ускорения автомобиля, датчик положения рулевого колеса.

Для обеспечения пассивной безопасности водителя и пассажиров необходимы датчики удара и акселерометры. Оптимальную работу таких систем обеспечивают датчик занятости сиденья переднего пассажира и его веса, датчики застегнутых ремней безопасности, датчики положения сидений. Эта информация используется для оптимального надувания подушек безопасности.

Более дорогие автомобили оснащаются датчиками для предупреждения столкновений (например, радарные), датчиками определения близости других автомобилей, датчиками высоты кузова по отношению к шасси, давления в шинах и многими другими.

В системе управления климатом в салоне автомобиля (климат-контроль) используются различные датчики для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом, дождя и освещенности.

Читать еще:  Чем легче отмыть двигатель

Это далеко не весь перечень существующих и используемых датчиков в современных автомобилях.
На рис. 2 показано характерное (классическое) расположение различных датчиков на легковом автомобиле. Конечно же, это лишь эталонная схема, и в зависимости от марки автомобиля, модели, года выпуска расположение датчиков может отличаться от классической схемы.

Рис. 2. Классическое расположение датчиков легкового автомобиля:

1 — датчик положения заслонок управляемого впускного коллектора; 2 — датчик тахометра; 3 — датчик положения распределительного вала (датчик фаз); 4 — датчик нагрузки двигателя; 5 — датчик положения коленчатого вала; 6 — датчик крутящего момента двигателя; 7 — датчик количества масла; 8 — датчик температуры охлаждающей жидкости; 9 — датчик скорости автомобиля; 10 — датчик давления масла; 11 — датчик уровня охлаждающей жидкости; 12 — радарный датчик системы торможения; 13 — датчик атмосферного давления; 14 — радарный датчик системы предотвращения столкновений; 15 — датчик скорости вращения ведущего вала КПП; 16 — датчик выбранной передачи в КПП; 17 — датчик давления топлива в рампе форсунок; 18 — датчик скорости вращения рулевого колеса; 19 — датчик положения педали; 20 — датчик скорости вращения автомобиля вокруг вертикальной оси; 21 — датчик противоугонной системы; 22 — датчик положения сиденья; 23 — датчик ускорения при фронтальном столкновении; 24 — датчик ускорения при боковом столкновении; 25 — датчик давления топлива в баке; 26 — датчик уровня топлива в баке; 27 — датчик высоты кузова по отношению к шасси; 28 — датчик угла поворота рулевого колеса; 29 — датчик дождя или тумана; 30 — датчик температуры охлаждающего воздуха; 31 — датчик веса пассажира; 32 — датчик кислорода; 33 — датчик наличия пассажира на сиденье; 34 — датчик положения дроссельной заслонки; 35 — датчик пропусков воспламенения; 36 — датчик положения клапана рециркуляции выхлопных газов; 37 — датчик абсолютного давления во впускном трубопроводе; 38 — датчик азимута, датчик уровня тормозной жидкости; 39 — датчик скорости вращения колес; 40 — датчик давления в шинах.

Описание некоторых из этих датчиков можно ознакомиться здесь.
В настоящей статье дается более полная характеристика некоторых датчиков автомобильных ЭСУ, а также методы диагностирования и проверки этих датчиков с помощью средств диагностики – сканеров или адаптеров, мультиметра и других приборов.

Цикл статей включает описание основных методов диагностирования следующих датчиков ЭСУ автомобилей:

Кроме рассмотренных в данном цикле статей датчиков ЭСУ иногда приходится диагностировать следующие датчики:

Датчик абсолютного давления (разрежения) во впускном коллекторе (ДАД) .
Выходной сигнал ДАД меняется от 4,5 В при 101 кПа (зажигание включено, двигатель не запущен, уровень моря) до 0,5 В при 20,1 кПа. При ненагруженном холостом ходе на уровне моря сигнал с ДАД составляет 1,5 В (40,4 кПа).
Этот датчик обычно используется в диагностических целях и как датчик нагрузки двигателя (ДНД).

Датчик температуры воздуха (ДТВ) .
Датчик температуры воздуха позволяет корректировать данные о количестве воздуха, поступившего в цилиндры (показания ДМРВ) с учетом его плотности, которая зависит от температурно-климатических условий, в которых работает двигатель.
Датчик выполнен на основе термистора с отрицательным температурным коэффициентом сопротивления. Размещен в системе подачи и очистки воздуха (в индукционном канале).
Рабочий диапазон температур — 40. 120 °С. При 30 °С выходное напряжение датчика 2,6 В.

Датчик скорости автомобиля (ДСА) .
Выдает импульсный сигнал с частотой, пропорциональной скорости автомобиля. Контроллер в ЭБУ двигателя использует сигнал от ДСА для управления коробкой передач и отключения топливоподачи при недопустимо высокой скорости автомобиля, а также для эффективного управления некоторыми электронными системами автомобиля (например, системой «стоп-старт»).

В заключение следует отметить, что работы по проверке работоспособности датчиков автомобильных электронных систем управления не регламентируются, т. е. не являются обязательными при выполнении планового технического обслуживания автомобилей, и проводятся лишь в случаях обнаружения соответствующих неисправностей.

О системе газораспределения двигателя

406 двигатель имеет по 4 клапана на каждый цилиндр (2 впускных и 2 выпускных), впускные клапаны приводятся левым (при виде спереди) распределительным валом, а выпускные — правым. Привод клапанов от кулачков выполнен с гидрокомпенсацией зазоров и не требует обслуживания и регулировки. Двухступенчатый привод распределительных валов осуществляется двухрядными втулочными цепями с числом звеньев 70 в нижней ступени и 90 в верхней.

При правильной сборке привода распределительных валов при положении поршня 1-го цилиндра в ВМТ такта сжатия:

  • риска на звездочке (2) коленчатого вала должна совпадать с выступом на крышке цепи (метка М1); — метки (9) на звездочках распределительных валов (10 и 12) должны быть расположены горизонтально и совпадать с верхней плоскостью головки цилиндров (13);
  • риска на звездочке промежуточного вала должна совпадать с установочной меткой М2 на блоке цилиндров.

При таком положении валов напротив середины сердечника датчика положения коленчатого вала (4) должна находится середина двадцатого зуба диска синхронизации (3). Диск синхронизации (1) представляет собой зубчатое колесо с 58 равноудаленными (через 6 градусов) впадинами. Для синхронизации два зуба отсутствуют. Номер зуба на диске синхронизации отсчитывается против часовой стрелки от места пропуска двух зубьев (15). Но даже после регулировки системы газораспределения, осталась потеря мощности.

Остается система зажигания. Микропроцессорная система МИКАС 5.4 обеспечивает управление зажиганием и клапаном экономайзера принудительного холостого хода карбюраторного 16 — клапанного двигателя ЗМЗ — 4063. В состав системы входит блок управления, комплект датчиков и исполнительных устройств, жгут проводов с соединителями. система управления позволяет реализовывать оптимальное значение угла опережения зажигания в зависимости от работы двигателя и условий его эксплуатации.

Благодаря применению датчика детонации и эффективной идентификации блоком управления детонационного сгорания в каждом цилиндре обеспечиваются высокие удельные показатели двигателя без опасности процессов детонации и калильного зажигания. В случае повреждения датчиков блок реализует аварийный режим управления. Исключение составляет датчик положения коленчатого вала — без него двигатель функционировать не может.

Продолжаем описание методов диагностирования двигателя 406 установленного на Газелях. У нас осталась проблема потери мощности. Дальше рассмотрим состав системы зажигания, принцип работы и методы диагностирования.

В состав системы управления входят:

датчик положения коленвала (ДПКВ) – индукционного типа. Он установлен в приливе передней крышки цепи газораспределительного механизма напротив венца зубчатого диска шкива коленчатого вала и имеет гибкий соединительный кабель, заканчивающийся 3-х контактной вилкой электрического соединения. Датчик представляет собой катушку с магнитным сердечником сопротивление ее обмотки составляет 880-900 Ом. Для нормальной работы системы управления необходимо, чтобы зазор между датчиком и зубьями диска состоял 0,5 – 1,0 мм. Кабель датчика должен быть надежно закреплен во избежание его повреждения вращающимися деталями двигателя и генератора. В системе управления применяются датчики модели 23.3847 российского производства или модели 0261210113 фирмы Bosch. При неисправности ДПКВ эксплуатация двигателя невозможна;

датчик абсолютного давления воздуха во впускном трубопроводе (ДАД) – тензометрического типа. Он установлен на моторном щите автомобиля и соединем вакуумным с задроссельным пространством впускного трубопровода двигателя. По измеренному значению блок управления вычисляет количество воздуха, поступающего в цилиндры двигателя. Датчик представляет собой выносное интегральное электронное устройство, имеющее рабочую камеру с образцовым внутреннем давлением, образованную слоями кремния и порошкового материала. В стенке рабочей камеры (мембране) расположены полупроводниковые чувствительные элементы, проводимость которых изменяется в зависимости от механического положения мембраны. Резисторы включены по мостовой схеме, так что смещение мембраны вызывает изменение баланса тензомоста. Резисторы связаны с электронной схемой обработки сигнала, которая размещена на той же плате, что и чувствительный элемент. Датчик питается стабилизированным напряжением 5 В и имеет линейную характеристику зависимости выходного напряжения (0,4….4,65 В) от величины измеряемого давления (0,2…1,05 бар). Датчик подключается к жгуту проводов посредством трехконтактной вилки. В системе управления применяется датчик модели 0261230004 фирмы Bosch;

датчик температуры охлаждающей жидкости (ДТохл.) — предназначен для определения температурного состояния двигателя. В соответствии с измеренным значением температуры блок корректирует значения угла опережения зажигания, а также управляет клапаном экономайзера принудительного холостого хода. ДТохл установлен на корпусе термостата системы охлаждения и подключен к жгуту посредством двухконтактного соединителя. В системе упраления применяется датчик модели 19.3828 или 40.5226 российского производства. Также в состав системы управления входят – датчик детонации, катушка зажигания, электромагнитный клапан экономайзера принудительного холостого хода. Их описания мы приведем позже следите за выпусками.

Читать еще:  Шум при работе двигателя рапид

Как все это работает?

Блок управления, используя сигнал с датчика положения коленчатого вала, вычисляет частоту вращения, а также благодаря еще и измерению абсолютного давления, определяет величину циклового наполнения каждого цилиндра двигателя воздухом. В запоминающем устройстве (ПЗУ) блока управления хранятся значения углов опережения зажигания в зависимости от частоты вращения и циклового наполнения, соответствующих работе двигателя. Эти значения углов дополнительно корректируются в зависимости от температуры охлаждающей жидкости. Для холодного двигателя устанавливаются увеличенные значения углов опережения зажигания, что обеспечивает его хорошие тяговые свойства в этих условиях. Блок управления дополнительно корректирует УОЗ при обнаружении детонационного сгорания, возникшего в результате применения топлива низкого качества, изменения окружающих условий или других причин.

В случае повреждения датчика абсолютного давления или датчик температуры охлаждающей жидкости в блоке управления активизируются аврийные прграммы и включается лампа диагностики. Эксплуатация двигателя с этими неисправностями приводит к снижению эксплуатационных показателей автомобиля – увеличивается расход топлива, снижается мощность, ухудщаются динамичкские свойства. Кроме управления зажиганием, в зависимости от условий работы двигателя блок управляет электромагнитным клапаном экономайзера принудительного холостого хода, обеспечивая отключение подачи топлива при торможении автомобиля двигателем. Частота вращения коленчатого вала, соответствующая отключению подачи топлива, составляет 1680 об/мин, возобновлению подачи – 1560 об/мин.

И так – у нас потеря мощности. С чего начнем?

Проверяем работоспособность бортовой системы диагностики и диагностичесой цепи – исправная система при активации режима отображения кодов неисправности должна выдавть код 12. (Чтобы начать считывать коды необходимо замкнуть контакты 10 и 12 на диагностической колодке).

Проверка наличия кода неисправности. Кодов неисправности нам не выдало.

Опрос параметров датчиков двигателя. Осуществляется диагностическим тестером путем сравнения измеренных значений с типовыми значениями для “среднего” двигателя. Хотя имея опыт и точные параметры сигналов в вольтах можно все измерить обычным мултиметром и осцилогрфом. Но мотортестер позволяет прверить исполнительные устройства и задать поправку угла опережения зажигания.

Проверка абсолютного давления на х.х. показала значения 50 мбар, а по “мануалу” должно быть 440 – 480. И при повышении оборотов давление должно увеличиваться, а у нас стояло практически на одном месте.

Причина оказалась довольно проста и банальна – загрязнения в трубке, ведущей от впускного коллектора к датчику давления. После устранения неисправности, Газель “зарычала” как и пржде в молодые годы.

Но не всегда бывает так просто, бывает на диагностику уходит от 2-х часов до целого дня. Так много времени могут занимать неисправности плавающего характера.

Что представляет собой «бортовая диагностика»

Под данным термином понимается система программно-аппаратных средств, которая может определять и идентифицировать неисправности и вероятные причины неисправностей СУД и двигателя.

Основные функции бортовой диагностики

Бортовая диагностика используется для решения следующих задач:

  1. Превышение оптимальной токсичности отработавших газов. Это требование к бортовой диагностике является действительным для всех систем управления двигателем, которые обеспечивают выполнение токсичных норм «Евро-3».
  2. Ухудшение параметров двигателя (к примеру, уменьшение мощности и крутящего момента, снижение ходовых качеств, увеличение топливного расхода).
  3. Выход из строя двигателя или компонентов системы управления. Например, это может быть выход из строя каталитического нейтрализатора при возникновении пропусков воспламенения.

Когда загорается диагностическая лампа, водитель не должен немедленно прекращать работу автомобиля. Это просто предупреждение о том, что в СУД присутствует неисправность, но автомобиль при этом может продолжить самостоятельное движение в аварийном режиме. Задачей водителя в данном случае будет как можно скорее доставить автомобиль к специалистам по обслуживанию техническому. Мигание диагностической лампы сообщает об обнаружении серьёзных неисправностей, которые могут привести к серьёзным повреждениям СУД (например, такая неисправность, как пропуск воспламенения).

При обнаружении той или иной неполадки в память ошибок контроллера СУД вносится следующая информация:

  1. Код ошибки в соответствии с международной классификацией.
  2. Статус-флаги или просто признаки, которые характеризуют состояние неисправности во время считывания информации при помощи прибора диагностики.
  3. Стоп-кадр показывает значения наиболее значимых для системы параметров при фиксации ошибки.

Во время обнаружения неисправности, чтобы обеспечить нормальные ходовые качества, предотвратить превышение значений токсичности, а так же предотвратить неисправности прочих составляющих СУД, система запускает аварийный режим работы. Суть такого режима заключается в том, что при появлении неисправностей цепи одного из датчиков контроллера СУД применяет для расчётов замещающие значения, которые значатся в памяти контроллера, не беря во внимание реальные сигналы датчика. Аварийный режим позволяет доставить автомобиль до сервисных служб. Бывает и такое, что водитель даже не подозревает о переходе автомобиля в аварийный режим работы.

О наличие неисправностей в системе бортовой диагностики сообщает зажигание лампы диагностической. После этого бортовая система диагностики должна дать возможность считывания информации после диагностики, которая находится в памяти контроллера при использовании специально предназначенного оборудования. Конкретно для этой цели в СУД сделан последовательный канал для передачи информации, который состоит из контроллера, исполняющего задачи приёмопередатчика, стандартизированной диагностической колодки, необходимой, чтобы подключать оборудование для диагностики. Чтобы передавать информацию, применяются стандартизированные протоколы. Диагностика двигателя ВАЗ 21099. Используя диагностическое оборудование, специалисты служб сервисов считывают из памяти контроллера данные о системе, обнаруженных ошибках, выполнить серию тестов проверки, управляя с этой целью исполнительными механизмами.

Использующиеся на сегодняшний день системы бортовой диагностики, могут идентифицировать почти сотню неполадок СУД. Каждая неисправность имеет свой код в соответствии с международной классификацией. К примеру, код P0102 является кодом неисправности «Датчик массового расхода воздуха. Сигнал низкого уровня». При этом код ошибки однозначно показывает, какой сигнал компонента СУД считается ложным , однако причину случившейся неисправности не определяет: это может быть и обрыв или же короткое замыкание цепей, и выход из строя самого контроллера, и неисправность датчика. Некоторые коды указывают неисправности не в одном из датчиков, а в целой подсистеме СУД. Такие коды возникают по причине неравномерного вращения коленвала, которое вызывают механические неисправности (к примеру, в одном из цилиндров понизилась компрессия), или неисправность электрических компонентов СУД. Случаются неисправности, коды ошибок по которым не фиксируются совсем, влияющие на качества ходовые. В любом из трёх случаев для определения точной причины неисправности необходимо провести серию проверок с использованием оборудования диагностики. Правильное использование всего объёма полученной от системы информации позволяет максимально уменьшить время на поиски неисправностей.

Как действует бортовая диагностика

Главным компонентом бортовой системы диагностики является контроллер СУД. Контроллер постоянно держит под контролем сигналы любых датчиков системы управления, и некоторые важные для двигателя параметры. Эти сигналы сравнивают с контрольными значениями, хранящимися в памяти контроллера. Если значения сигнала выходят за пределы контрольных значений, контроллер определяет это состояние как неисправность, формирует его и записывает в память ошибок, запускает алгоритм управления диагностической лампой и обеспечивает запуск аварийного режима работы СУД.

Функционировать система бортовой диагностики начинает при активации зажигания и прекращает при переходе контроллера в режим «stand by». Момент запуска того или другого алгоритма диагностики, и, конечно, его работа могут быть ограничены определёнными режимами работы двигателя.

Диагностические алгоритмы, которые заложены в контроллер, разделяются на три группы

  • Проведение диагностики механизмов исполнительных

Контролируется на замыкание сигнальной цепи, обрыв, источник питания. Существуют датчики, в которых реализована проверка выходного сигнала на его достоверность. В таких случаях контроллер отслеживает, чтобы информация сигнала датчика была в ожидаемом допустимом диапазоне.

  • Диагностика датчиков СУД

Диагностика датчиков контролируются так же, как и первая группа алгоритмов.

  • Функциональная диагностика
Читать еще:  Электрическая схема двигателя циркуляционного насоса

В СУД существуют следующие подсистемы:

  1. Подсистема зажигания
  2. Топливоподача.
  3. Поддержание холостого хода.
  4. Нейтрализация отработавших газов.
  5. Улавливание паров бензина.

Каждая из вышеперечисленных подсистем выполняет свою конкретную задачу. К любой из них предъявляются определённые требования допустимых отклонений от средних значений её параметров. В этих случаях бортовая диагностика отслеживает уже величины уже не отдельно взятых датчиков и исполнительных механизмов, а целую группу параметров, которые показывают работу всей подсистемы. К примеру, о качестве действий подсистемы зажигания судить можно по наличию пропусков воспламенения в камере сгорания двигателя. Диагностика двигателя. Коды неисправностей. Руководство. Адаптационные параметры передачи топлива показывают данные о значениях состояния подсистемы топливоподачи. Функциональная диагностика показывает качество работы всех подсистем в целом.

Диагностика катушек зажигания

Катушки зажигания (КЗ) на автомобилях из строя выходят достаточно часто, из-за неисправности этих деталей мотор может совсем не запускаться или троить и не набирать обороты. Сразу следует отметить, что КЗ могут быть разными по конструкции – на более старых моделях шла одна круглая катушка цилиндрического типа, на современных ДВС устанавливаются:

  • сдвоенные (по две КЗ) или монолитные модули с высоковольтными проводами и наконечниками;
  • катушки для каждого цилиндра – такие модули зажигания устанавливаются непосредственно на свечи, и у них нет в/в проводов и наконечников.

Проверяются КЗ различными способами:

  • внешним осмотром;
  • омметром;
  • осциллографом.

Часто катушки выходят из строя из-за перегрева, и на более старых моторах (например, ВАЗ «Классика») в результате обрыва или замыкания витков обмотки двигатель перестает запускаться, так как КЗ устанавливается на этих движках одна. На более новых авто при неисправной обмотке перестают работать только один или два цилиндра, и движок начинает троить.

Осматривать катушку следует очень внимательно – на токоизоляционных ее частях не должно быть следов прогара, а также присутствовать трещины. Если наружные дефекты обнаруживаются, деталь подлежит обязательной замене – в любом случае она уже долго не прослужит.

Проверить целостность обмоток КЗ можно с помощью омметра:

  • на первичной обмотке прибор должен показывать в пределах одного Ома;
  • на вторичной обмотке сопротивление колеблется в пределах от 5 до 20 КилоОм.

Показатели для различных моделей КЗ могут отличаться, для каждой марки существуют свои параметры. Но по сопротивлению исправность детали определить не всегда удается, более точно это можно выяснить при помощи осциллографа или путем ее замены на заведомо исправную запасную часть.

Как устроен инжектор

Чтобы понять, как проводить диагностику инжекторного мотора, необходимо понимать устройство его питающей системы.

Инжекторная система питания состоит из

  1. Различных датчиков.
  2. Дроссельной заслонки.
  3. Электронного блока управления (ЭБУ, контроллер).
  4. Электрического топливного насоса.
  5. Топливной рампы.
  6. Редукционного клапана.
  7. Топливных трубок.
  8. Форсунок.

Во-первых это датчики вращения. При проверке любых датчиков автомобиля можно измерять напряжение.

И вполне можно делать это с помощью мультиметра.

Но конкретно в датчиках вращения напряжение меняется очень быстро и мультиметр не способен уловить эти изменения.

К тому же биение задающего диска или повреждение его зубцов значительно влияет на выходной сигнал датчика.

Отличный пример диагностики ДПКВ можете посмотреть в этом видео.

Без осциллографа такую неисправность определить было бы очень трудно.

Например, это сигнал исправного индукционного датчика коленчатого вала

А это такой же сигнал, но здесь заметно осевое биение диска — зазор между датчиком и диском то увеличивается, то уменьшается, что влияет на амплитуду сигнала.

Здесь совсем хаотичные импульсы. С диском явно проблемы

Это сигнал исправного датчика Холла

А здесь виден дефект.

Любители проверять такие датчики светодиодной контролькой, эту неисправность не обнаружат.

Определить такие дефекты можно только с помощью осциллографа.

Во-вторых система зажигания. В системе зажигания протекают не очень сложные электрические процессы, но увидеть и проанализировать их без осциллографа мы их не сможем.

Визуально увидеть мы можем только конечный результат — искру на электродах свечи зажигания.

И то, только тогда, когда свеча не установлена на своё рабочее место в ДВС. Можно уверенно сказать, что осциллограф это рентген для системы зажигания (и не только).

При диагностике необходимо подсоединить сигнальный щуп осциллографа к минусу первичной катушки зажигания.

В некоторых системах нет физической возможности подсоединится к первичной обмотке.

Тогда можно с помощью ёмкостного или индукционного датчика измерить магнитное поле вокруг катушки зажигания или высоковольтного провода подающего напряжение на свечу зажигания.

В обоих случаях картинка будет отражать все процессы происходящие в системе.

Время накопления энергии. В этот момент на один конец первичной обмотки катушки зажигания приходит плюс, а второй конец замкнут на минус через транзистор коммутатора (или контакты прерывателя).

В первичной и вторичной обмотки накапливается магнитное поле.

Напряжение пробоя. При запирании транзистора (размыкании контактов прерывателя) магнитное поле исчезает и при этом на выводе вторичной обмотки возникает высокое напряжение.

Это напряжение подаётся на свечу и пробивает воздушный зазор между электродами свечи.

Время горения искры. После пробития воздушного зазора, между электродами свечи, для поддержания горения искры требуется меньше энергии.

Значит после напряжения пробоя (шип) мы увидим снижение напряжения, которое будет поддерживаться какое-то время.

Это и есть искра. Важно, что бы этот участок осциллограммы был на всех режимах работы ДВС.

Затухающие колебания — будут видны на последнем этапе.

После того, как искра прогорела, остатки энергии исчезают не мгновенно.

Это мы и увидим на картинке — плавное угасание.

Вышеперечисленные примеры это подробная диагностика электрических неисправностей. Это можно делать и осциллографом и мотор-тестером.

Мотор-тестер же кроме диагностики электронных систем автомобиля, позволяет так же определить состояние механики двигателя. И делается всё это с высокой точностью и без необходимости разбирать двигатель.

Самый простой и эффективный способ, это анализ давления в цилиндре.

Делается это следующим образом: Выкручивается свеча зажигания и на её место нужно вкрутить датчик давления в цилиндре, который имеется в комплекте мотор-тестера.

Если у вас дизель — то датчик устанавливается в место форсунки.

Заводим двигатель и записываем сигнал.

На экране ноутбука мы увидим график изменения давления в цилиндре.

На данной диаграмме мы видим что происходит с давлением в цилиндре на разных тактах работы двигателя.

Что мы можем определить по этой картинке:

  • Моменты открытия и закрытия клапанов, относительно положения коленчатого вала — это позволяет определить, верно ли установлены метки ГРМ.
  • По значению давления на такте выпуска можно определить, не забит ли «катализатор».
  • По значению разряжения на такте впуска, будет видно, есть ли сопротивление на впуске (загрязнён воздушный фильтр, грязь на РХХ, дросселе или клапанах) или присутствует подсос воздуха во впускной коллектор после дроссельной заслонки.

Осциллограмма Датчика давления в цилиндре. Метки ГРМ не правильно Выпуск опережает. Тойота Камри 40 Двигатель 2AZ-FE Вкладка «Фазы» Не правильно метки ГРМ. Тойота Камри 40 2AZ-FE График количества газов в цилиндре 2AZ-FE. Метки ГРМ не правильно. Выпуск Рано. Осциллограмма Датчика Давления в цилиндре Ниссан Примера 1999 года. Выпускной распредвал опережает Вкладка Фазы мотор-тестера Диамаг2. Ниссан Примера. Выпускной распредвал опережает График количества газов в цилиндре. Выпускной распредвал опережает на 1 зуб. Nissan Primera 1999 года выпуска График Давления в цилиндре Тойота Ярис. Неисправность системы VVT-i. Впускной распредвал запаздывает.

Это простые примеры, как мотор-тестер помогает при диагностике автомобилей на нашем СТО.

Конечно это не все его возможности. Более детально мы разбираем разные неисправности на практике, в процессе обучения на курсах авто-электриков и диагностов в Астане.

Повторюсь, что сегодня профессиональное диагностическое оборудование очень доступно по цене и не использовать его в работе — это признак непрофессионализма.

Тем более, что кроме платных обучающих курсов, очень много и бесплатной информации.

Например эти наши видеоуроки на канале YouTube

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector