Что такое перенапряжение двигателя - Авто журнал kupim-avto57.ru
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое перенапряжение двигателя

Типовые коды ошибок и меры для устранения сбоев и неполадок.

OC или Over Current. Появление такого сообщения на экране дисплея говорит о токовой перегрузке преобразователя. Если такая ошибка возникла при пробном пуске привода, требуется проверить целостность электрических цепей двигателя или соответствие номинальных токов электрической машины и регулятора. Некоторые модели преобразователей выдают детализированное сообщение о перегрузках при запуске, работе и торможении электродвигателя.

OL или Over Load. Такая запись на дисплее сигнализирует о перегреве двигателя или превышении момента силы на валу. Проблема решается настройкой тепловой защиты при программировании частотника путем задания величины тока и времени срабатывания.

OV или Over Voltage. Индикация этой записи происходит обычно при торможении двигателя. Такая проблема решается подключением тормозного резистора, отключения торможения путем перевода электрической машины в режим генератора или перенастройкой уставки срабатывания защиты от перенапряжения.

LV или Low Voltage. Причины этой ошибки – обрыв одной или двух фаз или снижение питающего напряжения. Если по условиям технологического процесса недопустима остановка электродвигателя, следует настроить преобразователь на продолжение работы двигателя в режиме однофазного.

OH или Over Heat. Это сообщение говорит о превышении допустимой температуры самого преобразователя. Решением проблемы является чистка встроенного вентилятора, установка дополнительного устройства вентиляции в шкаф, где размещен частотник, размещение преобразователя в месте, обеспечивающем отвод тепла.

Обозначение ошибок зависит от модели преобразователя. Для идентификации неисправностей лучше использовать руководство по эксплуатации, где указаны все коды и возможные причины появления сообщений об ошибках. При некоторых серьезных поломках коды неисправностей не выводятся. Подробнее вы можете почитать в специальной статье «Коды ошибок частотных проебразователей»

Рекомендации по выбору длин кабелей, соединяющих частотный преобразователь и электрический двигатель

В связи с большим количеством вопросов связанных с выбором длин кабелей между частотными преобразователями и асинхронными, и синхронными электродвигателями, сотрудники ООО «КоСПА» (сервисного центра YASKAWA), подготовили статью, затрагивающую как теоретические, так и практические аспекты, связанные с данным вопросом. При написании статьи были использованы материалы www.yaskawa.com.


Выбор длины кабеля между ПЧ и двигателем

Общая теория частотного регулирования

Преимущества использования частотных преобразователей (преобразователей частоты, ПЧ, частотников, инверторов) включают в себя: увеличение экономии энергии при использовании в высоковольтном сегменте, превосходное управление скоростью и моментом, а также более современное обеспечение защиты двигателя. Преобразователи частоты эволюционировали от схем, состоящих из Дарлингтоновых пар транзисторов (усилители на биполярных транзисторах), до современных IGBT-транзисторных модулей. Уникальные особенности IGBT-транзисторов, такие как снижение энергозатрат на переключение, значительно увеличили производительность и сделали возможным уменьшение габаритных размеров преобразователей частоты.

Однако было замечено, что двигатели, которые безотказно работали в течение длительного времени от сети, внезапно выходили из строя спустя несколько недель после установки частотного преобразователя. Такой вид аварии, обычно обуславливается выходом из строя обмотки двигателя из-за перенапряжения. Точнее, авария происходит и из-за короткого замыкания фаз между собой, и из-за замыкания фазы на корпус. Исследования показали, что возможность быстрого переключения IGBT-транзисторов, в совокупности с чрезмерной длиной кабеля между двигателем и преобразователем частоты способны значительно снизить срок жизни двигателя.

Чтобы понять, почему преобразователь частоты может стать причиной более быстрого выхода из строя двигателя, необходимо рассмотреть два явления. Первым является отраженная волна, по -другому явление стоячей волны, вторым – перенапряжение (перерегулирование напряжения при коммутациях), также известное как условие резонансного контура. Теоретически эти два явления могут быть рассмотрены по-разному, но на практике решение по их устранению одинаково.

Отраженная волна. При рассмотрении длины кабеля в качестве линии электропередач, следующая формула может быть применена при расчете критической длины, или длинной линии, где имеет место отражение волны напряжения. Критическая длина кабеля определяется формулой:

где, -скорость нарастания волны (мc), м/c –скорость света в вакууме, -приблизительная распределенная индуктивность кабеля, -время нарастания импульса напряжения, -длина кабеля.

Следующее уравнение соотносит время включение IGBT- транзистора и максимальную длину проводящей линии (кабеля):

При превышении этого значения длины возможно возникновение явления стоячей волны. При увеличении периода ШИМ преобразователя частоты с 0,1 мс до 0,3 мс, минимальная длина необходимая для перенапряжения, возрастет с 16 до 48 м.

Перенапряжение (перерегулирование напряжения). Более точное описание того, что происходит в двигателе, выглядит следующим образом. Перенапряжение (дребезг) это функция энергии, запасенной в проводнике, в течение времени нарастания каждой выходной пульсации напряжения (ШИМ). В то время, как распределенная индуктивность – особенность длинного проводника, лежащего между двигателем и преобразователем. Индуктивность увеличивает время, необходимое для зарядки емкости двигателя, что в свою очередь приводит к увеличению запаса энергии в линии. Когда двигатель все же заряжается до необходимого потенциала, оставшаяся энергия линии продолжает подзаряжать двигатель, увеличивая значения потенциала обмоток, способствуя возникновению перенапряжения. Фактически, при достаточно большой длине проводника (кабеля), к обмотке двигателя может быть приложено двойной напряжение звена постоянного тока частотного преобразователя. Т.е. чем больше расстояние между двигателем и преобразователем, тем больше перенапряжение. Однако, некорректно утверждать, что перенапряжение пропорционально длине кабеля. Максимальное значение перенапряжения можно рассчитать:

Читать еще:  Электрический двигатель как защитить

где, Vmax-максимальное напряжение сети, — максимальное напряжение звена постоянного тока, — максимальное значение перенапряжения.

В типовых системах на 460В, максимальное перенапряжение на клеммах двигателя может достигать 1500 В. Почти 80% этого напряжения распределяется по первичной обмотке двигателя.

Время включения IGBT-транзисторов разработано с целью возможности влияния на перенапряжение. Если ключи переключаются достаточно медленно, емкость двигателя имеет возможность зарядиться, а после этого разрядиться в линию. Однако, при увеличении скорости переключения, напряжение, прикладываемое к линии, увеличивается, значении запасенной энергии возрастает, и, как следствие возрастает перенапряжение.

Это объясняет, почему 6-ступенчатые, медленные по сравнению с современными, преобразователи, использующие технологию Дарлингтона (усилитель) редко встречались с проблемой перенапряжения при той же длине кабеля. Также важно отметить, трехфазные двигатели на 230В в достаточной мере защищены от пробоя в следствие перенапряжения, благодаря существующему стандарту изоляции.

5-е поколение IGBT ПЧ

4-е поколение IGBT ПЧ

3-е поколение IGBT ПЧ

1-е поколение IGBT ПЧ

Запираемый тиристор (GTO)

Возникающие проблемы

Явление коронного разряда

Для того, чтобы понять, почему перенапряжение столь губительно для двигателя, необходимо рассмотреть явление коронного разряда. Представим, что между проводниками с током существует относительный потенциал, который создает электрическое поле. Напряженность электрического поля вокруг проводников может быть достаточной для осуществления пробоя воздуха. Так как энергии электрического поля достаточно для ионизации кислорода (O2), чтобы осуществить его перехода в озон (O3), происходит пробой. Озон представляет собой высокоактивный элемент, поэтому он незамедлительно вступает в реакцию с органическими компонентами изоляции. А примеси кислорода в этой системе способствуют разрушению изоляции. Явление коронного заряда происходит, когда потенциал проводников достигает некоторого порогового значения, называемого начальным напряжением коронного заряда. Начальное напряжение коронного заряда зависит от расположения проводников, типа изоляции, температуры, особенностей поверхности и влажности.

Если у двигателя нет соответствующей изоляции, он может выйти из строя раньше срока. Предполагается, что двигатель, управляемый с помощью частотного преобразователя, произведён с изоляцией класса F или выше, а также имеет фазовую изоляцию.

Генерация радиочастотных и электромагнитных помех

Значение электрического шума, вырабатываемого проводниками на выходе преобразователя частоты, также зависит от длины используемого кабеля. Во избежание возникновения помех, необходимо экранировать кабель при установке соединения. Если осуществить это не получается, необходимо использовать фильтрующие устройства для снижения индуктивных помех.

Защитное отключение двигателя

В некоторых ситуациях возможно создать условия, при которых преобразователь частоты защитит себя от Замыкания на Землю (Ground Fault) или от перегрузки по току (Over Current). Эти аварии происходит в ситуациях, когда множество кабелей прокладывают в непосредственной близости друг к другу, без соответствующей изоляции. Используя основные законы физики, можем доказать, что ток, протекающий по одному проводу, наводит напряжение на другой, так же, как и ток протекающий по другому проводу наводит напряжение на этот провод. Имея множество проводников в непосредственной близости, могут возникнуть условия, когда неравные потенциалы и токи могут навестись в разных фазах привода, результатом может стать замыкание на землю.

Также известно, что емкость между фазами и емкость между фазой и землей возрастает при увеличении длины проводника. Поэтому возможно возникновение ошибки перегрузки по току в течение времени заряда фазных емкостей и емкостей фазы относительно земли.

Если виды этих защитных отключений встречаются довольно редко, то эти ситуации можно обойти, правильно установив оборудование. Если это уже сделано, возможно улучшить ситуацию, применив фильтрующие устройства.

Решение проблем

Снижение длины проводника

Для снижения вероятности возникновения чрезмерного перенапряжения на клеммах двигателя, необходимо, чтобы длина кабеля, соединяющего преобразователь с двигателем была меньше 45 м. Также хорошим вариантом будет снизить несущую частоту ШИМ преобразователя, что, в свою очередь непременно скажется на шуме двигателя, но снизит число выходных импульсов напряжения в секунду, увеличив срок жизни двигателя и уменьшив нагрев IGBT-транзисторов.

Читать еще:  Двигатель b6324s какое масло лить

Специальный двигатель для частотного регулирования

Простейшим и наиболее выгодным решением является использование специального двигателя для частотного регулирования. Стандарт NEMA Standart MG-1, устанавливает, что такие двигатели должны быть способны выдержать 1600 В импульсного напряжения, продолжительностью 0.1 мс или более, для двигателей класса напряжения 600В и менее. Если двигатель правильно спроектирован и соответствует этому стандарту, то можно расчитывать на безотказную работу в течение длительного времени при любой длине кабеля.

Трехфазный выходной реактор (дроссель)

Реактор расположенный на выходе преобразователя, снижает градиент напряжения, прикладываемый к обмоткам двигателя. Время нарастания импульса снижается до 1,1 мс, таким образом снижая dV/dt до 540В/мс. Это в свою очередь эквивалентно времени переключения Дарлингтоновской схемы, используемой в прошлом, а, следовательно, очень эффективно для продления жизни двигателя. Выходной реактор решает приблизительно 75% проблем, связанных с преждевременным выходом из строя двигателя, из-за большой протяженности кабеля. Обычно используются реакторы с 3% и 5% импедансом (входным сопротивлением). При полной нагрузке приблизительно от 3 до 5 % выходного напряжения спадет на реакторе. Однако, если возникает сомнения относительно развиваемого момента электродвигателем, его необходимо проверить при максимальной скорости.

При наличии возможности разместите выходной реактор максимально близко к электродвигателю. Это позволяет увеличить длину кабеля до 198 м без влияния на производительность двигателя. В этом случае реактор может начать изнашиваться, но выход из строя дросселя займет значительно большее время, чем двигателя при тех же условиях. Однако это может стать одним из наиболее эффективных и бюджетных решений, особенно если речь идет о электродвигателях с плохой изоляцией, которые зачастую встречаются в погружных насосах.

Для обеспечения безотказной работы при длине до 610м при недостаточном классе изоляции двигателя, необходимо использовать специально разработанные выходные фильтры. Эти фильтры разработаны для устранения высших гармоник, возникающих из – за ШИМ, а также для снижения времени импульса до 1,2 мс. Это обеспечивает чистый ШИМ- сигнал на клеммах двигателя.

Преимущества моторных дросселей

Благодаря установке моторных дросселей в цепи питания электродвигателя в системе “преобразователь частоты – двигатель” обеспечивается:

    Оптимальное подавление гармоник высших частот, генерируемых на выходе преобразователя. За счёт этого увеличивается значение КПД двигателя, подключённого к частотнику, и уменьшается его нагрев. Это позволяет продлить срок эксплуатации электродвигателя и сокращает затраты на содержание и ремонт оборудования.

Поскольку формирование выходного синусоидального сигнала выполняется преобразователем при помощи широтно-импульсной модуляции напряжения (ШИМ), то без применения моторного дросселя высокочастотные пульсации могут достигать довольно высокого уровня, оказывая негативное воздействие на двигатель;

Уменьшение амплитуды и темпов нарастания токов короткого замыкания, благодаря чему оптимизируется защита от токов короткого замыкания. За счёт этого Вы можете быть уверенными в том, что частотный преобразователь не потеряет работоспособность даже при возникновении форс-мажора в виде короткого замыкания в электродвигателе. Что опять же продлевает срок службы оборудования.

В этом случае при возникновении короткого замыкания в выходной цепи преобразователя частоты ток короткого замыкания нарастает не мгновенно, а с некоторой степенью задержки, так как в токовой цепи благодаря установке там моторных дросселей присутствует индуктивность. В силу этого, образуется определенный промежуток времени, который позволяет оперативно сработать электронной защите преобразователя частоты и не допустить выход частотника из строя;

Компенсация емкостных токов протяженных кабельных линий до двигателя позволит выбирать необходимую длину кабеля, удобное местоположение шкафа управления, не ограничиваясь рекомендуемым расстоянием в 30-40 метров.

Производители преобразователей частоты в характеристиках своего оборудования указывают максимальную длину кабельного соединения от частотника до двигателя. Как правило, это расстояние составляет не более 30-40 метров. Для возможности увеличения максимальной длины кабеля (примерно на 50%) могут применяться моторные дроссели, которые урезают высокие емкостные токи и позволяют не допустить ложного срабатывания защит частотника при большой длине кабеля;

Сглаживание пиковых значений напряжения на обмотках двигателя. Тем самым продлевает срок службы, сокращает затраты на ремонт и замену, увеличивая эффективность финансовых затрат на обслуживание оборудования.

При работе электродвигателя от ПЧ к обмоткам двигателя прикладывается импульсное напряжение с высокими пиками перенапряжений, превышающими амплитуду номинального напряжения двигателя. Это может повлечь за собой возможный пробой изоляции обмоток, в том числе, при длительной эксплуатации по причине ухудшения изоляционных свойств обмотки двигателя.

Читать еще:  Двигатель 2тр фе характеристики

5. Перегрев ПЧ

Код на дисплее: OH (Over Heat). Это сообщение говорит о том, что температура ПЧ слишком высока. В первую очередь следует проверить исправность внутренних вентиляторов преобразователя и прочистить его сжатым воздухом. Также необходимо проверить отвод тепла от ПЧ, температуру и циркуляцию воздуха внутри электрошкафа. Возможно, потребуется установить дополнительное охлаждение или уменьшить нагрузку.

Мы перечислили лишь основные сообщения о неисправностях. Их число может доходить до нескольких десятков, что позволяет точнее настраивать работу преобразователя и диагностировать неисправности. В различных моделях ПЧ эти сообщения могут индицироваться по-разному, например, в частотнике ProStar PR6000 они выглядят как Er01, Er02, и т.д., но смысл имеют аналогичный.

При ряде неисправностей преобразователей частоты сообщения на экране не выводятся. В основном, это связано с проблемами питания или с фатальными сбоями в работе ПЧ. Кроме того, если существуют проблемы с первоначальным запуском, то есть вероятность ошибки в подключении цепей управления (запуска). Рассмотрим подробнее такие неисправности.

Режим торможения

Торможение выбегом (инерционное торможение), аналогично отключению двигателя от питающей сети, при этом процесс может занять продолжительное время. Особенно если это высокоинерционные механизмы. С помощью частотного преобразователя можно осуществить останов или торможение двигателя с переходом на более низкую скорость работы за более короткий промежуток времени. Возможно несколько вариантов:

  • отдать в сеть электроэнергию (режим рекуперативного торможения);
  • выполнить остановку подачей на обмотки статора напряжения более низкой частоты или постоянного напряжения, тогда избыток запасенной кинетической энергии выделится в виде тепла через радиаторы преобразователя частоты и сам двигатель (режим торможения постоянным током);
  • выполнить остановку или торможение с использованием тормозного прерывателя и комплекта тормозных резисторов.

Целесообразность применения того или иного метода рассматривается в основном с точки зрения экономической выгоды. Так рекуперация в сеть более выгодна в плане экономии электроэнергии, привод с использованием тормозного сопротивления — более дешевое техническое решение, торможение двигателем вообще не требует дополнительных затрат, но в свою очередь возможно только при малых мощностях.

ВХОДНЫЕ ЭЛЕМЕНТЫ ЗАЩИТЫ

1. Сетевые дроссели

Сетевой дроссель является двухсторонним буфером между сетью электроснабжения и преобразователем частоты. Защищает сеть от высших гармоник 5, 7, 11 и т. д. (250Гц, 350 Гц, 550 Гц).

Преимущества применения сетевых дросселей типа ED3N:

  • защищает преобразователь частоты от импульсных всплесков напряжения в сети
  • защищает преобразователь частоты от перекосов фаз питающего напряжения
  • уменьшает скорость нарастания токов короткого замыкания в выходных цепях преобразователя частоты
  • повышают срок службы конденсатора в звене постоянного тока


Рис.2. Форма входного тока преобразователя частоты без дросселя и с сетевым дросселем ED3N.

2. Сглаживающие дроссели

Сглаживающий дроссель ED1W. Выполняет те же функции, что и сетевой дроссель, кроме защиты преобразователя частоты от импульсных всплесков напряжения в сети и от перекосов фаз питающего напряжения.

Преимущества применения сглаживающих дросселей типа ED1W:

  • ограничивает пульсации в звене постоянного тока
  • уменьшает скорость нарастания токов короткого замыкания в выходных цепях преобразователя частоты
  • повышают срок службы конденсатора в звене постоянного тока


Рис.3. Форма входного тока преобразователя частоты без дросселя и с дросселем ED1W.

Преобразователи частоты(ПЧ) SINAMICS G150 мощностью 75…800 кВт шкафного исполнения для большинства применений

преобразователь частоты шкафного исполнения SINAMICS G150 Siemens представляют приводную систему в которой все сетевые и двигательные компоненты, также как и модуль питания интегрированы очень компактно в специально спроектированный шкаф, минимизирует объём работ и расходы для конфигурации и установки инвертора.

Инверторы SINAMICS G150 специально настроены под требования приводов с квадратичной характеристикой и с характеристикой постоянной нагрузки, под требования со средней нагрузкой и без рекуперативной обратной связи. Точность бездатчикового векторного управления подходит для большинства применений, и дополнительные датчики действительной скорости по этой причине излишни. Однако ПЧ SINAMICS G150 могут быть укомплектованы, опционально, датчиками для специальных задач предприятий. Широкий набор компонентов и опций обеспечивает применение частотных регуляторов G150 для большинства задач заказчика с сохранение экономичности приводных решений.

Существует два варианта преобразователей частоты шкафного типа G150:

Области применения частотных преобразователей SINAMICS G150 — для приводов, которые не требуют замкнутой системы регулирования и высоких динамических характеристик: насосы, вентиляторы и компрессоры.

Основные особенности и характеристики преобразователей частоты SINAMICS G150:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector