2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое крутящий момент на коленчатого вала двигателя

Сцепление – это одна из составляющих трансмиссии. Трансмиссия передает крутящий момент от двигателя на ведущие колеса и изменяет величину крутящего момента, в том числе и его направления. В зависимости от трансмиссии ведущими могут являться, как задние, так и передние колеса. На рисунке 9.1 представлен пример трансмиссии заднеприводного автомобиля. Рис. 9.1. Схема трансмиссии заднеприводного автомобиля I — Двигатель; II — Сцепление; III — Коробка передач; IV — Карданная передача: 1 — эластичная муфта; 2 — шлицевое соединение; 3 — передний карданный вал; 4 — подвесной подшипник; 5 — передний карданный шарнир; 6 — задний карданный вал; 7 — задний карданный шарнир; V — Задний мост с главной передачей и дифференциалом: 8 — полуоси; 9 — ведущие (задние) колеса

Рассмотрим первую составляющую трансмиссии – сцепление. Сцепление передает крутящий момент от маховика коленчатого вала двигателя к первичному валу коробки передач.

Составляющими сцепления являются привод и самого механизма сцепления.

Привод выключения сцепления. Каждый механизм в автомобиле начинает свою работу при помощи привода. Так и сцепление. Привод выключения сцепления относится к приводу гидравлического типа. Схема привода сцепления представлена на рисунке 9.2. Рис. 9.2. Схема гидравлического привода выключения сцепления и механизма сцепления 1 — коленчатый вал; 2 — маховик; 3 — ведомый диск; 4 — нажимной диск; 5 — кожух сцепления; 6 — нажимные пружины; 7 — отжимные рычаги; 8 — нажимной подшипник; 9 — вилка выключения сцепления; 10 — рабочий цилиндр; 11 — трубопровод; 12 — главный цилиндр; 13 — педаль сцепления; 14 — картер сцепления; 15 — шестерня первичного вала; 16 — картер коробки передач; 17 — первичный вал коробки передач

    Привод выключения сцепления состоит из следующих механизмов:
  • педаль,
  • главный цилиндр,
  • рабочий цилиндр,
  • вилка выключения сцепления,
  • нажимной подшипник,
  • трубопроводы.

Когда водитель нажимает на педаль сцепления давление его ноги через шток и поршень передается жидкости, а жидкость передает давление от поршня главного цилиндра на поршень рабочего. При помощи штока рабочего цилиндра перемещается вилка выключения и нажимной подшипник. Подшипник передает усилие механизму сцепления. После того как водитель отпустит педаль, возвратные пружины вернут все детали в исходное положение.

Механизм сцепления.

Итак, для того, чтобы машина поехала, водитель должен включить сцепление. Это происходит в три этапа:

1. Отпуская немного педаль, водитель предоставляет возможность пружинам нажимного диска подвести ведомый диск к маховику до их соприкосновения. За счет возникших сил трения ведомый диск начинает вращаться. Автомобиль начинает трогаться.

2. Удерживая педаль, мы тем самым удерживаем ведомый диск. Это нужно для того, чтобы скорость вращения маховика и ведомого диска сравнялась. На этом этапе автомобиль начинает увеличивать скорость.

3. На этом этапе диск и маховик вращаются с одинаковой скоростью, передавая крутящий момент коробке передач, а затем на ведущие колеса. Сцепление полностью включено, и машина едет (рисунок 9.3).

Для выключения сцепления необходимо нажать на его педаль. При этом нажимной диск отходит от маховика, ведомый диск освобождается, прерывая передачу крутящего момента от двигателя к коробке передач (рисунок 9.4) Рис. 9.3. Сцепление включено Рис. 9.4. Сцепление выключено

Основные неисправности сцепления.

Сцепление выключается не полностью. Причина: большой свободный ход педали сцепления, перекос нажимного подшипника, повреждение ведомого диска, поломка пружин. Способ устранения: регулировка свободного хода педали, выпуск воздуха из гидропривода, замена неисправных дисков и пружин.

Сцепление включается не полностью. Причина: малый свободный ход педали, замасливание (износ) фрикционных накладок ведомого диска, поломка пружин. Способ устранения: регулировка свободного хода, чистка или замена дисков, пружин.

Сцепление включается резко. Причина: заедание в механизме привода, задира на рабочих поверхностях дисков или маховика, разрушение фрикционных накладок ведомого диска. Способ устранения: замена неисправных узлов привода, устранение задиры на поверхностях дисков, замена ведомого диска.

Течь тормозной жидкости в приводе выключения сцепления. Причина: течь из главного или рабочего цилиндров, из соединительных трубок. Способ устранения: замена неисправных узлов, прокачка всего гидропривода (удаление воздуха).

Устройство современного двигателя

Динамический расчёт кривошипно-шатунного механизма заключается в определении суммарных сил и моментов, возникающих от давления газов и от сил инерции. По этим силам производятся расчёты основных деталей на прочность и износ, а также определение неравномерности крутящего момента и степени неравномерности хода двигателя. Во время работы двигателя на детали кривошипно-шатунного механизма действуют: силы от давления газов в цилиндре; силы инерции возвратно-поступательно движущихся масс; центробежные силы; силы от давления на поршень со стороны картера и силы тяжести. В течение каждого рабочего цикла силы, действующие в кривошипно-шатун­ном механизме, непрерывно изменяются по величине и направлению. Поэтому для определения характера изменения этих сил по углу поворота коленчатого вала их величины определяют для ряда отдельных положений вала.

Читать еще:  Что стучит в двигателе 2112 16v

Исходные данные для динамического расчёта двигателя:

Диаметр цилиндра D = 0,12 м.

Ход поршня S = 0,14 м.

Длина шатуна L = 0,25 м.

Частота вращения коленчатого вала двигателя n = 1500 мин -1 .

Масса поршневого комплекта mП. = 3,1 кг.

Масса шатуна в сборе mL. = 4,3 кг.

Безразмерная координата центра масс шатуна LB/L = 0,32.

Наружный диаметр шатунной шейки d = 0,078 м.

Диаметр полости в шатунной шейке d1 = 0,031 м.

Длина шатунной шейки с = 0,051 м.

Плотность материала коленчатого вала ρ = 7,8∙10 3 .

Ширина щеки h = 0,15 м.

Высота щеки Н = 0,175 м.

Безразмерная координата центра масс щеки ХЩ./R = 0,5.

Толщина противовеса b = 0,0285 м.

Вспомогательные расчёты двигателя

Площадь поршня, м 2

Радиус кривошипа, м

Угловая частота вращения коленчатого вала, с -1

Прямолинейно движущаяся масса в цилиндре двигателя, кг

Вращающаяся масса шатуна в отсеке двигателя, кг

Масса шатунной шейки, приведенная к её оси, кг

Масса щеки, приведенная к оси шатунной шейки, кг

Приведенная масса кривошипа, кг

Вращающаяся масса в отсеке двигателя, кг

Сила инерции вращающейся массы, кН

Расчёт сил и крутящего момента в отсеке двигателя

Сила давления газов, кН

где р – текущее значение давления газов в цилиндре, МПа.
Значение р выбирается для текущего значения угла поворота кривошипа
из расчёта рабочего процесса (табл. А.1).

Ускорение прямолинейно движущейся массы, м/с 2

где α – угол поворота кривошипа, градусы.

Сила инерции прямолинейно движущейся массы, кН

Суммарная сила, действующая в точке сочленения поршня с шатуном, кН

Нормальная сила, передаваемая поршнем на стенку цилиндра, кН

где β – угол отклонения шатуна от вертикали, градусы

Сила, передаваемая по шатуну на кривошип, кН

Радиальная составляющая силы QA на кривошипе, кН

Полная радиальная сила в отсеке, кН

Тангенциальная составляющая силы QA на кривошипе, кН

Крутящий момент на кривошипе, кН∙м

Расчёт сил и крутящего момента в отсеке двигателя на интервале углов поворота кривошипа от нуля до 710º с шагом Δα = 10º приведен в таблице 4.1. На рисунках 4.1 и 4.2 изображены графики зависимостей рассчитанных сил от угла поворота кривошипа. Для наглядности, зависимости крутящего момента на кривошипе и общего крутящего момента, рассчитываемого ниже, от угла поворота кривошипа, изображены на одном графике (рис. 4.3).

Расчёт крутящих моментов, передаваемых коренными шейками

Чтобы результаты расчёта были максимально наглядными, необходимо предварительно пронумеровать элементы коленчатого вала. Будем нумеровать кривошипы начиная от носка коленчатого вала одним числом. Коренные шейки будут соответственно нумероваться двумя числами, обозначающими номера кривошипов, с которыми соседствует данная коренная шейка. С носка коленчатого вала происходит отбор мощности для привода вспомогательных агрегатов двигателя и генератора. В общем случае, крутящий момент, возникающий при этом, необходимо учитывать в расчётах. Однако в данном случае, так как двигатель предназначен для установки с генератором, этот крутящий момент будет составлять менее 5 % от индикаторного момента на валу двигателя. Поэтому в дальнейших расчётах крутящий момент на носке коленчатого вала не учитываем.

Крутящий момент М1,2 на коренной шейке 1,2 равен моменту М1, создаваемому на первом кривошипе. Крутящие моменты на каждой последующей коренной шейке складываются из момента на предыдущей коренной шейке и момента на предыдущем кривошипе. То есть, М2,3 = М1,22; М3,4 = М2,3 + М3 и так далее. Крутящий момент на последней коренной шейке равен общему крутящему моменту МКр., создаваемому двигателем.

Крутящий момент, создаваемый на данном кривошипе, зависит от угла поворота кривошипа. При заданном порядке работы цилиндров двигателя (1-3-4-2), каждый последующий цилиндр из порядка работы цилиндров будет отставать от предыдущего на 180º. Принимаем, что угол поворота первого кривошипа равен нулю (для четырёхтактного двигателя это всё равно, что 720º, так как весь его цикл длится два оборота коленчатого вала). Значения крутящегомомента при известном угле поворота кривошипа выбираются из таблицы 4.1.

Все полученные величины крутящих моментов на любом кривошипе для углов поворота кривошипа от нуля до 710º с шагом Δα = 10ºсведены в таблицу 4.2. По рассчитанным значениям строится график зависимости общего крутящего момента, создаваемого двигателем, от угла поворота коленчатого вала, представленный на рисунке 4.3. На этом графике также нанесена величина среднего крутящего момента МКр.Ср., определяемая как среднее арифметическое значений крутящего момента на всём интервале углов поворота коленчатого вала.

Читать еще:  Что такое тепловой прихват двигателя
Расчёт нагрузок на шатунные шейки и подшипники

В однорядном двигателе шатунная шейка нагружена силой QA, передаваемой по шатуну, и силой инерции PB.L. вращающейся массы шатуна. Для удобства расчётов, силу QA заменяют двумя силами – ZA, направленной к центру вращения кривошипа, и TA, направленной под углом
90º к ZA в сторону вращения кривошипа (рис. 4.4).Шатунный подшипник нагружен реакциями шатунной шейки (рис. 4.5).

При расчёте нагрузки на шатунную шейку, КШ., используют систему коодинат ZШ. – ТШ., вращающуюся вместе с коленчатым валом. А составляющие реакции при расчёте нагрузки на подшипник, RШ., определяют в системе координат RZ.Ш. – RТ.Ш., жёстко связанной с шатуном (см. рис. 4.5).

Радиальная составляющая нагрузки на шатунную шейку, кН

Тангенциальная составляющая нагрузки на шатунную шейку, кН

Полная нагрузка на шатунную шейку, кН

Полученные значения нагрузок ZШ. и ТШ. можно использовать для определения нагрузок на шатунный подшипник. Составляющие нагрузок, кН

Полная нагрузка на шатунный подшипник, кН

Значения ZA и ТА при заданном угле поворота кривошипа выбирают из таблицы .

1. Все расчёты по пункту .5 для углов поворота кривошипа от нуля до 710º с шагом Δα = 10º представлены в таблице .3.

Также по результатам данного расчёта построены годографы нагрузок на шатунную шейку и шатунный подшипник. Они изображены соответственно на рисунках 6. и 7.

Оценка неравномерности вращения коленчатого вала

Избыточная работа суммарного крутящего момента двигателя определяется как площадь наибольшей фигуры, образованного кривыми общего крутящего момента двигателя, МКр., и среднего крутящего момента, МКр.Ср. (рис. 4.3), с учётом масштаба графика. Она равна Lизб = 94,5 кН∙м.

Момент инерции вращающихся масс кривошипно-шатунного механизма в одном отсеке

где ZП – число противовесов, приходящихся в среднем на один кривошип.

Момент инерции обода маховика

где — плотность материала маховика, кг/м 3 ;

b – ширина маховика, м;

r2 – внешний радиус обода маховика, м;

r1 – внутренний радиус обода маховика, м.

Момент инерции ступицы маховика

где b1 – ширина ступицы маховика, м;

r – радиус ступицы маховика.

Момент инерции маховика

Момент инерции вращающихся масс кривошипно-шатунного механизма

Степень неравномерности вращения коленчатого вала

Неравномерность вращения коленчатого вала должна составлять для дизель-генератора

Двигатель Renault MASTER

Фургоны Renault MASTER оснащаются современным дизельным двигателем Renault M9T и 6-ступенчатой МКПП. В зависимости от версии мощность двигателя составляет 125 л. с. с крутящим моментом 310 Н·м или 150 л. с. с крутящим моментом 350 Н·м при 1500 оборотах коленчатого вала. Расход топлива составляет от 7,1 л/100 км в загородном цикле.

ДВИГАТЕЛИ

Двигатель Renault M9T

Чтобы адаптировать двигатели Renault M9T к российским условиям, мы защитили их стальными листами. Это повышает безопасность при возможных механических повреждениях. Кроме того, в стандартной комплектации устанавливается система подогрева топливного фильтра, которая обеспечивает стабильный запуск двигателя в холодное время года. Отдельно стоит отметить, что механизм ГРМ Renault MASTER приводится в движение цепью — это положительно влияет на его надежность и снижает эксплуатационные расходы.

ТРАНСМИССИИ

Каждый тип привода имеет свои преимущества. В переднеприводной версии Renault MASTER в приоритете полезная грузоподъемность и движение по автодорогам. Заднеприводная версия выдерживает более тяжелые нагрузки и легче адаптируется к перемещению по разной местности.

Переднеприводный Renault MASTER
Из-за низкого порога грузового отделения переднеприводный Renault MASTER нацелен на полезную грузоподъемность и движение по автодорогам.
Преимущества:

  • простота погрузки благодаря одному из самых низких дверных порогов в сегменте
  • больший объем погрузки благодаря большей полезной высоте и низкому дверному порогу
  • полная масса транспортного средства до 3,5 т (категория водительских прав В)
  • повышенный комфорт при вождении
  • низкий расход топлива при перевозках на большие расстояния
  • три варианта компактной длины (L1, L2, L3), полезный объем грузового отсека до 14,1 м³

Заднеприводный Renault MASTER
Благодаря повышенной грузоподъемности, возможностям буксировки и движению по бездорожью заднеприводный MASTER станет вашим лучшим напарником для перевозки тяжелых грузов по мягкому грунту.
Преимущества грузоподъемности:

  • увеличенная максимальная нагрузка на заднюю ось
  • два варианта длины (L3 и L4), полезный объем грузового отсека до 15,8 м³
  • возможность буксировки груза массой до 750 кг
  • увеличенная полная масса автомобиля от 3,5 до 4,5 т
Читать еще:  Шевроле реззо технические характеристики двигателя

Преимущества привода:

  • улучшенная тяга при перевозке тяжелых грузов на крутых склонах и мягком грунте позволяет предотвратить риск застревания
  • улучшенная способность преодолевать препятствия
  • сдвоенные колеса для увеличения сцепления и большей нагрузки на заднюю ось

Что такое крутящий момент на коленчатого вала двигателя

  • Мотоциклы
  • Обзоры/Тесты
    • Jawa
    • ИЖ
    • Минск
    • Урал/Днепр
    • Восход
    • Скутеры
  • Литература
    • Jawa
    • ИЖ
    • Минск
    • Урал/Днепр
    • Восход
    • Скутеры
  • Тюнинг
    • Jawa
    • ИЖ
    • Минск
    • Урал/Днепр
    • Восход
    • Скутеры
  • Фотографии
  • Видео
  • Автомобили
  • Обзоры/Тесты
    • ВАЗ
    • УАЗ
    • ГАЗ
    • Audi
    • Alfa Romeo
    • Volkswagen
    • Peugeot
    • Renault
    • Mercedes
    • BMW
    • CITROEN
    • Fiat
    • Ford
    • Skoda
    • SEAT
    • Honda
    • Mazda
    • Nissan
    • Opel
    • Volvo
    • Toyota
    • Mitsubishi
    • Daewoo
  • Литература
    • ВАЗ
    • УАЗ
    • ГАЗ
    • Audi
    • Alfa Romeo
    • Volkswagen
    • Peugeot
    • Renault
    • Mercedes
    • BMW
    • CITROEN
    • Fiat
    • Ford
    • Skoda
    • SEAT
    • Honda
    • Mazda
    • Nissan
    • Opel
    • Volvo
    • Toyota
    • Mitsubishi
    • Daewoo
  • Тюнинг
    • ВАЗ
    • УАЗ
    • ГАЗ
    • Audi
    • Alfa Romeo
    • Volkswagen
    • Peugeot
    • Renault
    • Mercedes
    • BMW
    • CITROEN
    • Fiat
    • Ford
    • Skoda
    • SEAT
    • Honda
    • Mazda
    • Nissan
    • Opel
    • Volvo
    • Toyota
    • Mitsubishi
    • Daewoo
  • Фотографии
  • Видео
  • Прочее
  • Видеоматериалы
    • Мотоциклы
    • Автомобили
    • Ремонт
    • Передачи
  • Общая литература
  • Тюнинг
  • Журналы
  • Карты дорог
  • История
  • Полезные статьи
  • Фотогалерея
  • Новости

Календарь

Друзья сайта

Крутящий момент распредвал Значение крутящего момента

Основной характеристикой двигателя автомобиля обычно считают его мощность. В действительности же влияние на характер автомобиля оказывает не только максимальная мощность, сколько — крутящий момент. Ведь наибольшую мощность можно реализовать только при установившихся оборотах, близких к максимальным, а в таком режиме мы почти не ездим. Водителю нужен приемистый двигатель, который при троганье с места и разгоне, не напрягаясь, «идет» за педалью газа. Это обеспечивает крутящий момент, если он достаточно большой и относительно постоянный на низких и средних оборотах. Двигатели ВАЗ имеют существенный недостаток — отсутствие «тяги» на низких частотах вращения коленвала. До 3000 об/мин двигатель не обладает достаточной приемистостью и в результате — дерганье при троганье с места, провалы при резком нажатии на педаль газа, недолговечность сцепления, неэффективное использование пятой передачи. Наибольшее влияние на кривую крутящего момента оказывают параметры газораспределения — фазы и «время-сечение» открытия клапанов, которые заданы профилем кулачков распределительного вала. Чтобы улучшить приемистость, надо быстро подать в цилиндр нужный заряд рабочей смеси, то есть сузить фазу открытия впускного клапана. Широкие растянутые фазы на низких частотах приводят к обратному выталкиванию топливо воздушной смеси во впускной коллектор и только с увеличением частоты вращения инерционность потока «пересиливает» и наполнение цилиндров увеличивается.

Спортивные распредвалы отличаются от обычных, широкими фазами открытия клапанов, более острым и высоким кулачком. Причем переходные участки рассчитаны (против серийных кулачков) таким образом, что пробег между очередными регулировками увеличивается примерно вдвое. Распредвал обеспечивает подачу полноценного заряда в цилиндр путем увеличения высоты подъема клапанов. Кулачки отличаются исключительной плавностью профиля, что обеспечивает надежную работу механизма газораспределения при широких фазах. Увеличенный базовый диаметр распредвалов для двигателей заднеприводных ВАЗ предотвращает ненормальный износ торцев клапанов. При эксплуатации в городе автомобиля с таким валом можно использовать на одну передачу выше, чем привыкли раньше, с соответствующим снижением частоты вращения коленвала при спокойной езде, либо выкручивая двигатель, в максимальной степени реализовать агрессивный, спортивный стиль езды. При этом мотор под нагрузкой работает без перебоев даже при предельном снижении оборотов.

Особенностью спортивных валов является то, что их применение отодвигает границу детонации (на жаргоне — «стук пальцев»), в особенности на малых частотах вращения коленвала. Так же снижается расход топлива и токсичность выхлопных газов, уменьшается склонность к детонации и теплонапряженность двигателя, увеличивается ресурс мотора. Предлагаемые распредвалы «Мастер Мотор» позволяют выбрать для каждого объема двигателя и условий эксплуатации наиболее оптимальный вариант:

1. низовой моментный вал для городской езды

2. универсальный вал: «город-трасса»

3. верховой вал: «трасса» (4 вида).

Выбирая для двигателя определенного объема распредвал с меньшими подъемами клапанов, в наибольшей степени реализуется положительный эффект в области низких частот вращения коленвала. Распредвал с большими подъемами кулачков позволяет повысить мощность на высоких частотах вращения

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector