Что такое косинус фи в асинхронном двигателе
Что такое коэффициент мощности двигателя или косинус фи
Показатель коэффициента мощности двигателя, который обозначается как «косинус фи», обычно стараются сделать как можно больше. Чем меньше будет значение, тем большую силу должен иметь ток, чтобы выделить в цепи нужную мощность. Если при расчетах в чем-то ошибиться, то неизбежно увеличится потребление электроэнергии, а коэффициент полезного действия при этом, наоборот, уменьшится.
- Важный показатель
- Мгновенная мощность
- Активная и реактивная
- Увеличение значения
Способы увеличения «косинуса фи»
Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:
- Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
- Увеличение загрузки двигателей;
- Недопущение работы двигателей вхолостую продолжительное время;
- Правильный и высококачественный ремонт двигателей;
- Применение статических (то есть неподвижных, невращающихся) конденсаторов.
Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.
Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.
Это явление называется компенсацией сдвига фаз и широко используется на практике.
По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.
Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.
На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.
Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:
а – схема включения; б – векторная диаграмма
Отрезок ос, представляющий активную слагающую тока I1, равен:
Пользуясь выражением мощности переменного тока
отрезок ос выразим так:
Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.
Из треугольника оас и овс имеем:
Из диаграммы получаем:
Так как и ab = IC , то
Вместе с этим, как было указано выше,
Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.
Решение.
Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.
Реактивная мощность (Q)
Измеряется в вар (вольт ампер реактивный)
Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.
Реактивная мощность может быть как положительной так и отрицательной.
Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.
Q = I*U*sin φ
Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.
Основные способы коррекции cos φ
1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.
2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.
3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.
Подробное видео с объяснением, что такое cosφ :
Формула коэффициента мощности: косинус фи для потребителей, единица измерения
Мощность в цепи переменного тока и коэффициент мощности (косинус φ) В профессиональном лексиконе электрика наиболее популярны слова: фаза, ток, напряжение и словосочетание «косинус-фи». Этот «косинус-фи» всегда головная боль заводского энергетика.
Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности.
Коэффициент мощности характеризует потребителя электрической энергии с точки зрения наличия в нагрузке реактивной составляющей, при которой переменный ток и напряжение не совпадают по фазе.
Коэффициент мощности показывает, насколько переменный ток в нагрузке сдвигается по фазе относительно напряжения на ней (отстает или опережает). Численно коэффициент мощности равен косинусу этого фазового сдвига.
В электроэнергетике для коэффициента мощности принято обозначение cos φ (где φ — угол сдвига по фазе между током и напряжением). При наличии в нагрузке реактивной составляющей наряду со значением коэффициента мощности часто указывают и характер нагрузки: активно-ёмкостная или активно-индуктивная. Тогда коэффициент мощности называют соответственно опережающим или отстающим.
Мощность в цепи переменного тока
Для начала следует подробно рассмотреть вопрос электрической мощности. В электрической цепи постоянного тока все просто и достаточно понятно. В такой цепи зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение: В цепи переменного тока формулы для расчета мощности и само понятие мощности несколько сложнее. В общем случае в электрической цепи синусоидального переменного тока изменение напряжения и тока во времени не совпадают. Или другими словами напряжение и ток не совпадают по фазе. Ток отстает по фазе от напряжения при индуктивной нагрузке, и опережает напряжение при емкостной нагрузке. Только в частном случае, когда нагрузка чисто активная, ток и напряжение совпадает по фазе. В сети переменного тока различают полную, активную и реактивную мощность. Отметим, что само понятие реактивной мощности актуально только для электротехнических устройств переменного тока. Оно никогда не применяется к потребителям постоянного тока в силу малости (мизерности) соответствующих эффектов, проявляющихся кратковременно только при переходных процессах (включении/выключении, регулирование, изменение нагрузки). Полная мощность в цепи переменного тока (для однофазной нагрузки) равна произведению действующего значения тока на действующее значение напряжения (измеряется в ВА , кВА – вольт-амперах, кило вольт-амперах)
Полная мощность представляет практический интерес, как величина, определяющая фактические электрические нагрузки на обмотки, провода, кабели, аппаратуру распределительных щитов, силовые трансформаторы, линии электропередач. Собственно поэтому номинальная мощность генераторов и трансформаторов, нагрузки аппаратов распределительных щитов и пропускная способность линий электропередач указывается в вольт-амперах, а не в ваттах. Полная мощность состоит из двух составляющих – активной Р, и реактивной Q мощности. Активная мощность это та часть электрической энергии выработанной генератором, которая безвозвратно преобразуется в тепловую (лампы накаливания, электроплиты, электропечи сопротивления, потери в трансформаторах и линиях электропередачи) или в механическую (электрические двигатели) энергию. Активная мощность измеряется в Вт, кВт (ватт, киловатт). Активную мощность можно определить по следующей формуле (для однофазной нагрузки):
Вот здесь и появляется знаменитый cos φ
Если ток совпадает по фазе с приложенным напряжением то угол φ = 0, и соответственно cos φ =1. Для электрической сети это оптимальный вариант. В этом случае полная мощность равна активной мощности и вся электрическая энергия в нагрузке превращается в другие виды энергии. Например, в электрочайнике – в тепловую энергию. Чаще потребители электрической энергии имеют обмотки и магнитопроводы (электрические двигатели, трансформаторы, дроссели газорязрядных ламп, пускатели и реле) необходимые для их нормальной работы. В общем случае такая нагрузка называется индуктивной. При чисто индуктивной нагрузке ток отстает от напряжения на угол φ = 90О , при котором cos φ = 0 и активная мощность также P = 0. Для характеристики таких потребителей в электротехнике введено понятие реактивной мощности:
Реактивная мощность измеряется в Вар, кВАр (вольт-амперах реактивных, кило вольт-амперах реактивных). Кстати, реактивную мощность можно измерить с помощью счетчика реактивной энергии, также как и активную счетчиком активной энергии. Названа мощность реактивной совсем не по аналогии с «ракетой». Мы помним, что в физике термин «реактивный» обычно употребляется как связанный с возникновением движения под действием силы отдачи струи пара, газа и т. п., вытекающей с большой скоростью в противоположную силе отдачи сторону. В электротехнике это элемент электрической цепи, обладающий индуктивностью и/или электрической ёмкостью, и термин реактивный употребляется для характеристики элемента электрической цепи, обладающего этими свойствами. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Физически реактивная мощность, это мощность, которая накапливается в электрических и магнитных полях. При наличии в сети индуктивности и, например, статического конденсатора электромагнитная энергия в один полупериод изменения тока накапливается в электромагнитном поле катушки индуктивности, в следующий полупериод возвращается конденсатору, где накапливается в его электрическом поле, а затем возвращается обратно к индуктивности. Следует понимать, что реактивная мощность не расходуется на выполнение работы электротехнического устройства (нагрев, выполнение механической работы) но она необходима для его нормальной работы. Так в трансформаторе электрическая энергия передается с первичной обмотки во вторичную цепь посредством электромагнитного поля, для создания которого и необходима реактивная мощность. Преобразование электрической энергии в асинхронном электродвигателе осуществляется с помощь того же электромагнитного поля, и снова для его создания также требуется источник реактивной мощности. На генерацию активной мощности расходуются первичные энергоресурсы – газ, мазут, уголь, энергия ветра или падающей воды. Поскольку каждые полпериода переменного тока накопленная в магнитном поле реактивная энергия отдается обратно в источник (синхронный генератор, конденсатор) то в идеале на генерацию реактивной мощности не требуется расход первичного энергоносителя. Однако при более глубоком рассмотрении оказывается, что реактивная энергия не такая уж безобидная. На генерацию реактивной мощности все- таки требуется расходовать некоторое количество первичного энергоносителя для покрытия механических и электрических потерь в генераторах, диэлектрических потерь в конденсаторах. Кроме того при передаче реактивной энергии в линиях и трансформаторах возникают потери на нагрев. Еще одна неприятность состоит в том, что генерация и передача реактивной энергии требует увеличения установленной мощности генераторов, увеличения сечения проводов и мощности трансформаторов, т. е. связана с большими экономическими затратами. В энергетической системе источниками реактивной мощности могут быть синхронные генераторы, синхронные компенсаторы, перевозбужденные синхронные двигатели и конденсаторы. Решение о способе компенсации реактивной мощности всегда необходимо принимать на основе технико–экономического анализа. Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Чисто условно принято говорить, что они потребляют положительную реактивную мощность. Реактивная мощность статических конденсаторов отрицательна и принято говорить, что они генерируют реактивную мощность. Синхронные генераторы в зависимости от величины тока возбуждения могут, как производить, так и потреблять реактивную мощность. Т.е. ведут себя относительно электрической сети как емкость или как индуктивность. То же можно сказать и о синхронных двигателях и синхронных компенсаторах. Впрочем, есть класс синхронных машин – реактивные машины, которые такой способностью не обладают. Численное значение коэффициента мощности электроустановок переменного тока может находится в диапазоне от 0,05-0,1 для трансформаторов в режиме холостого хода до 1,0 для нагревательных электроприборов и ламп накаливания. Коэффициент мощности асинхронных электродвигателей при номинальной нагрузке может быть 0,7 – 0,9 и зависит от номинальной мощности, конструктивного исполнения, а также числа полюсов. Маломощные и тихоходные (многополюсные) двигатели отличаются пониженным значением cos φ . С уменьшением загрузки двигателей и трансформаторов их cos φ также значительно уменьшается.
Измерение коэффициента мощности
Для прямого измерения cos φ и фазы применяются специальные электроизмерительные приборы — фазометры. При отсутствии таких приборов коэффициент мощности можно определить косвенным методом по показаниям трех приборов :амперметра, вольтметра и ваттметра. Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно. В симметричной трехфазной цепи cos φ = Pw / (√3 х Uл х Iл); где Pw – активная мощность трехфазной системы, Uл, Iл – соответственно линейные напряжение и ток. В симметричной трехфазной цепи значение коэффициента мощности можно определить также по показаниям двух ваттметров Pw1 и Pw2 по формуле
Коэффициент мощности величина не постоянная, он зависит от характера и величины нагрузки. Для асинхронного двигателя изменение нагрузки от нуля до номинальной приводит к изменению cos φ от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке. Для практических целей расчета мощности компенсирующих устройств в электрических сетях используют средневзвешенный коэффициент мощности за некоторый интервал времени — сутки или месяц. Для этого за рассматриваемый период снимают показания счетчиков активной и реактивной энергии Wa и Wр и расчитывают средневзвешенный коэффициент мощности по формуле
Компенсация реактивной мощности
Для уменьшения потерь, устранения перегрузок трансформаторов и линий электропередач прибегают к искусственному повышению коэффициента мощности электрических установок путем компенсации реактивной мощности непосредственно у потребителей с помощью батарей статических конденсаторов.
Энергетическая диаграмма, иллюстрирующая передачу электрической энергии между генератором Г и потребителем Д, потребляющим активную и реактивную энергию. а) — при отсутствии компенсатора, б) — при наличии его (батарея статических конденсаторов С) . Синим цветом показано поток активной энергии, красным – реактивной. Добавлять комментарии могут только зарегистрированные пользователи.[ Регистрация | Вход ]
Выбор выключателя по месту использования
Прежде всего, необходимо отметить, что вне зависимости от назначения АВ и вида цепи, которую он будет предохранять, основными критериями будут являться:
- марка производителя (от этого может напрямую зависеть качество продукции);
- продавец (лучше не стоит покупать такой важный аппарат с рук или у непроверенного, нелицензированного продавца);
- сечение провода, чем оно выше, тем больше пропускная способность тока;
- напряжение, мощность тока в сети.
Для обычной жилой квартиры или дома чаще всего используют выключатели серии ВА. Они имеют две ступени защиты – от превышения номинального значения тока и от сверхтока (следствие короткого замыкания). Первая представляет собой биметаллическую пластину, которая изгибается от напряжения и выключает АВ (тепловая защита). Вторая имеет электромагнит, который отключает цепь в случае замыкания (электромагнитная защита).
Для применения в трансформаторах, электрических двигателях и иных высокомощных агрегатах требуется и соответствующий автомат. При расчете силы тока АВ используются особые формулы, о которых речь пойдет чуть ниже. Исходя из них, для мощных структур подойдут выключатели из серии К 8-15 или D 10-20.
Некоторая сложность возникает при расчете требуемой силы тока для асинхронного двигателя. Например, если для лампочек накаливания формула расчета будет следующая: суммарная мощность тока/напряжение = 200 Вт/220 В = 0,91 А, то для двигателя в формулу вмешается «косинус фи». Обычно его значение указывается на табличке, но если такового нет, можно брать цифру 0,7 или 0,6. Для асинхронного двигателя мощность 2000 Вт расчет будет следующий: мощность/напряжение/косинус фи = 2000 Вт/220 В/0,7 = 13 А.
Выбор автоматического выключателя по силе тока
Сила тока – самая важная характеристика для АВ. Именно по значению рабочей силы сети выбирается выключатель. Защитная функция как раз и состоит в том, чтобы показатель в амперах, проводимый по цепи не превышал показателя, на который рассчитан АВ, иначе произойдет отключение.
Ниже представлена таблица АВ по значению силы тока и их «рабочее пространство»:
Автоматический выключатель | Рабочее пространство (сила тока цепи, при которой предпочтительна именно эта модель) | Холостое пространство (сила тока, при которой АВ будет защищать лишь от коротких замыканий, предпочтительна более слабая модель) |
---|---|---|
1А | 0-1А | нет |
2А | 1-2А | 0-1А |
3А | 2-3А | 0-2А |
6А | 3-6А | 0-3А |
10А | 6-10А | 0-6А |
16А | 10-16А | 0-10А |
20А | 16-20А | 0-16А |
25А | 20-25А | 0-20А |
32А | 25-32А | 0-25А |
40А | 32-40А | 0-32А |
50А | 40-50А | 0-40А |
63А | 50-63А | 0-50А |
Важно, чтобы сила тока попадала именно в рабочее пространство, тогда у выключателя будет достигнута максимальная эффективность. Например, по примерам из предыдущего раздела: для двух лампочек накаливания (I = 0,91А) лучше всего использовать самые слабые АВ с силой 1А. Сила тока асинхронного двигателя (I=13А) попадает в диапазон автомата с 16А.
Как выбрать АВ по мощности
Самый распространенный критерий выбора автомата – мощность электросети. Впрочем, важно не забывать, что немалую роль играет и сечение провода и даже возраст проводки. Помимо этого, значения могут разниться в зависимости от напряжения (220 или 380 вольт) и количества фаз.
Простой пример поможет лучше разобраться в выборе. Есть необходимость установить выключатель на сеть, обеспечивающую электричеством жилую комнату. Возьмем для наглядности следующие показатели:
- сечение провода не менее 2,5 мм, проводка медная и в хорошем состоянии;
- напряжение – 220 вольт, подключение – однофазное;
- мощность электрического тока – 3000 Ватт.
Сила измеряется по вышеуказанной формуле: мощность/напряжение и составит 13,6 А. Смотрим таблицу значений. Наиболее подходящий вариант – автомат 16А.
Для определения необходимого АВ, можно свериться со следующими усредненными параметрами для однофазной цепи с мощность 220В:
- АВ 1А (автоматический выключатель 1А) – до 0,2 кВт.
- АВ 2А – до 0,4 кВт.
- АВ 3А – до 0,7 кВт.
- АВ 6А – до 1,3 кВт.
- АВ 10А – до 2,2 кВт.
- АВ 16А – до 3,5 кВт.
- АВ 20А – до 4,4 кВт.
- АВ 25А – до 5,5 кВт.
- АВ 32А – до 7 кВт.
- АВ 40А – до 8,8 кВт.
- АВ 50А – до 11 кВт.
- АВ 63А – до 13,9 кВт.
При выборе выключателя для трехфазной сети мощностью 380В, по сути, ничего не меняется. Единственным различием будет учет упомянутого ранее косинуса фи (или угла сдвига).
Пример: необходимо установить на такую сеть АВ. Косинус фи по документации равен 0,6, напряжение – 380В, общая мощность – 7000 Вт. Формула – 7000/380/0,6 = 30,07. На одну фазу (полюс) придется напряжение, близкое к характеристикам 10А. По аналогии с прошлым сравнительным списком, ниже приведены характеристики для такой сети.
- АВ 1А – до 1,1 кВт.
- АВ 2А – до 2,3 кВт.
- АВ 3А – до 3,4 кВт.
- АВ 6А – до 6,8 кВт.
- АВ 10А – до 11,4 кВт.
- АВ 16А – до 18,2 кВт.
- АВ 20А – до 22,8 кВт.
- АВ 25А – до 28,5 кВт.
- АВ 32А – до 36,5 кВт.
- АВ 40А – до 45,6 кВт.
- АВ 50А – до 57 кВт.
- АВ 63А – до 71,8 кВт.
При выборе автоматического выключателя будьте предельно внимательны и обращайте внимание на все показатели самого АВ (марка, производитель, продавец, сила тока) и сети (косинус, мощность, напряжение, сечение, фазы и т.д.)
Коррекция коэффициента мощности
Коррекция коэффициента мощности (компенсация реактивной мощности) – это название технологии, которая используется с начала 20 века для восстановления значения коэффициента мощности до значения, как можно более близкого к единице. Это обычно достигается подключением к сети конденсаторов, которые компенсируют потребление реактивной мощности индуктивными нагрузками и таким образом снижают нагрузку на источник. При этом не должно быть никакого влияния на работу оборудования.
Обычно для уменьшения потерь в системе распределения и снижения расходов на электроэнергию производится компенсация реактивной мощности с помощью конденсаторов, которые подключаются к сети для максимально возможной компенсации тока намагничивания. Через конденсаторы, содержащиеся в большинстве устройств компенсации реактивной мощности, проходит ток, который опережает по фазе напряжение, обеспечивая таким образом опережающий коэффициент мощности. Если конденсаторы подключаются к цепи, которая работает при отстающем коэффициенте мощности, это отставание соответственно уменьшается.
Обычно значение скорректированного коэффициента мощности находится в пределах от 0,92 до 0,95. Некоторые распределительные энергокомпании поощряют работу при коэффициенте мощности, к примеру, больше 0,9, а некоторые штрафуют потребителей за низкий коэффициент мощности. Имеется много методов достижения данной цели, суть которой сводится к тому, что для снижения потерь энергии в системе распределения потребителю рекомендуется применять коррекцию коэффициента мощности. В настоящее время большинство сетевых компаний штрафуют потребителей при коэффициенте мощности ниже 0,95 или 0,9.
Мощность электродвигателя. Секреты энергоэкономии.
Мы часто сталкиваемся со спорными точками зрения на достаточно простые вещи, которые касаются физики, поэтому заранее просим прощения у специалистов за простой язык и «разжевывание». В этой статье мы детально разберем понятия мощности электродвигателя, методы нахождения потребляемой мощности из сети, а также попробуем понять как можно сэкономить на электроэнергии. Сразу оговоримся, что разбирать будем асинхронный тип электродвигателя как наиболее часто используемый.
Итак, любой электродвигатель имеет базовые характеристики, которые указывает завод-производитель на шильде каждого своего изделия.
Как видим, на шильде указаны:
1) Тип электродвигателя и заводской номер
2) Количество фаз 3, частота тока 50 Hz, подключение треугольник/звезда 220/380В, номинальные токи 2,7/1,6А
3) Номинальная мощность электродвигателя на валу 0,55кВт, номинальная частота вращения вала 1360 об/мин, КПД 75%, косинус фи 0,71
4) Режим работы S1 (постоянный), класс изоляции обмоток F, ГОСТ
5) Степень защиты от пыли и влаги IP54, год выпуска
Как же определить какова потребляемая мощность электродвигателя от сети? Для начала разберемся в понятиях. Номинальная мощность электродвигателя, которая указывается на шильдике электродвигателя это та мощность, которую электродвигатель выдает в установившемся номинальном режиме работы при условии сбалансированной оптимальной работы всего механизма, который приводят электродвигателем. Каждый механизм имеет свою энергетическую характеристику и оптимальный режим работы с точки зрения энергопотребления. Таким образом, первая задача, которую стоит решить для достижения минимизации потребляемой энергии – это правильный подбор электродвигателя для привода того или иного механизма.
Потребляемая мощность электродвигателя от сети является динамической величиной и зависит от нагрузки на валу электродвигателя и потерь мощности на неполезной работе, такой как трение, нагрев и т.д. Наилучший способ определения потребляемой из сети мощности – это эмпирический, поскольку любые расчетные методики дадут значительную погрешность, а погрешности в вопросах энергоэффективности недопустимы. Таким образом, для максимально точного определения потребляемой мощности электродвигателя от сети рекомендуем «погонять» приводимый механизм в различных стандартных режимах работы, измеряя и фиксируя токи в каждом из режимов при помощи токосъемных инструментов. А еще лучше – воспользоваться цифровым счетчиком электрической энергии.
Легко заметить, что в нагруженных режимах работы таких как пуск, работа под нагрузкой, номинальный режим, торможение, токи в обмотках увеличиваются, повышаются ЭДС, крутящий момент на валу и т.д. Отсюда следует вторая задача, которую следует решить для снижения потребляемой мощности электродвигателя – задача снижения линейных токов в режимах высокого потребления электроэнергии.
Путем регулирования частоты тока
Этот метод получил пока наибольшее распространения ни смотря на высокие расходы на внедрение, частотное регулирование производится при помощи специальных частотных преобразователей, стоимость которых часто превышает в несколько раз стоимость самого электропривода. Очень безопасный и эффективный метод снижения мгновенной мощности электродвигателя.
Регулирование напряжения
Экономия электроэнергии путем регулирования частоты вращения электродвигателя плавным изменением напряжения питания при помощи регулятора напряжения. Этот метод применим в некоторых случаях, однако опасен остановками электродвигателя из-за т.н. опрокидывания, когда момент сопротивления механизма выше, чем мощность электродвигателя на валу вследствие непропорционального снижения питающего напряжения. Также такой метод локально снизить мощность электродвигателя требует дополнительных средств контроля режимов работы электродвигателя, контроля температуры обмоток, контроля частоты вращения, мощности электродвигателя на валу.
Решение вопроса влияния несимметричности напряжения сети на мощность электродвигателя.
Качество напряжения сети непосредственно влияет на потребление электроэнергии. На симметричность напряжения влияют сами потребители электроэнергии неравномерной нагрузкой по фазам, используя устройства нелинейной нагрузки. Самые «весомые» создатели нелинейной нагрузки – подстанции электротранспорта. Из-за несимметричности напряжения в асинхронном двигателе создается эллиптическое магнитное поле и несколько крутящих моментов, один из которых тормозит систему и расходует энергию.
Реактивная мощность электродвигателя. Внедрение компенсаторов.
Как известно, потребляемая из сети электрооборудованием мощность состоит из ряда составляющий, главными из которых являются активная и реактивная мощность. Последние годы в мире динамично развивается направление по внедрению компенсаторов реактивной мощности, что позволяет экономить электроэнергию промышленным потребителям.
Микроконтроллеры
Также перспективным направлением по экономии электроэнергии при использовании асинхронных двигателей является внедрение микроконтроллеров, которые позволяют в режиме реального времени мониторить момент сопротивления приводимого оборудования и соотносить его с крутящим моментом электродвигателя. При снижении момента сопротивления, микроконтроллер передает команду регулятору напряжения. Такая компенсацию реализуется без изменения частоты вращения, поэтому применима только для оборудования, не требующего регулировки частоты.