0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое часовой ток двигателя

Похожие статьи

Модернизация схемы испытания тяговых двигателей.

Выбор системы возбуждения тяговых электрических двигателей. При использовании независимого возбуждения тяговых двигателей ток возбуждения

rд = 0,082 Ом — сопротивление обмоток ТЭД типа ЭД-125; I — ток двигателя, А; V — скорость тепловоза, км/ч.

Математическое моделирование процесса испытаний двигателей.

Наиболее распространенной схемой для испытаний тяговых двигателей постоянного тока последовательного возбуждения является схема, представленная на рисунке (рисунок 1). Схема работает следующим образом.

Моделирование параметров системы автоматического.

Выбор системы возбуждения тяговых электрических двигателей. При использовании независимого возбуждения тяговых двигателей ток возбуждения изменяется по закону: где — уставка тока возбуждения, А; k — коэффициент компаундирования обратной связи по.

К вопросу о совершенствовании технологии ремонта тяговых.

Работа тягового электродвигателя (ТЭД) при значительных перепадах

5. Овчаренко С. М. Повышение эффективности системы диагностирования тепловозов / С.М. Овчаренко

. влияющие на работу тягового привода, в том числе и на тяговый электродвигатель.

О некоторых особенностях уравнений А. В. Гапонова для.

В системе (2) можно принять: , так как, подавая на обмотку возбуждения постоянный ток и постоянное напряжение, мы регулируем угловую скорость якоря путем регулирования напряжения, подаваемого на обмотку якоря.

Модернизированная схема испытаний асинхронных тяговых.

Наиболее распространенной схемой для испытаний тяговых двигателей постоянного тока последовательного возбуждения является схема, представленная на рисунке (рисунок 1). Схема работает следующим образом.

Оценка эффективности применения универсального стенда для.

‒ первая часть — схема для испытаний тяговых двигателей постоянного тока (рисунок 1)

где — часовой ток, кА; — сопротивление обмотки якоря, Ом; — коэффициент ослабления возбуждения

Перспектива применения электродвигателей в автомобилях

Тяговый асинхронный электродвигатель для мотор-колёс. Следует отметить, что по способу управления автомобиль с мотор-колёсами не

Галимов Н. С., Иванов В. А., Фатыхов К. З. Автоматическое управление включением обмотки возбуждения генератора переменного тока.

Способ прогрева тепловозов от внешнего источника.

Сущность рассматриваемого способа прогрева заключается в том, что при подаче электроэнергии на тяговый генератор прогреваемого дизеля, обеспечения системы возбуждения и отключения топливных насосов высокого давления (ТНВД).

Расчет мощности электродвигателя для насоса

Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.

Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч – коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 – 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.сут — значение среднесуточного расхода воды (л/сут).

Оптимальный напор воды должен обеспечивать ее подачу в установленное место при условии необходимого давления. Требуемые параметры напора насоса (Ннтр) зависят от высоты всасывания (Нвс) и высоты нагнетания (Ннг), которые в сумме определяют показатели статического напора (Нс), потери в трубопроводах (Hп) и разность давлений верхнего (Рву) и нижнего (Рну) уровней.

Исходя из того, что значение напора будет равно H = P/ρg, где Р — давление (Па), ρ — плотность жидкости (кг/м 3 ), g = 9,8 м/с2 — ускорение свободного падения, g — удельный вес жидкости (кг/м 3 ), получается следующая формула: Ннтр = Hc + Hп + (1/ρ) х (Рву – Рну).

После вычисления расхода воды и напора по каталогу уже можно выбрать насос с наиболее подходящими параметрами. Чтобы не ошибиться с мощностью электродвигателя, ее нужно определить по формуле: Pдв = (kз х ρ х Qн х Нн) / (ηн х ηп), где kз является коэффициентом запаса, зависящим от мощности электродвигателя насоса и составляет 1,05 – 1,7. Этот показатель учитывает возможные утечки воды из трубопровода из-за неплотных соединений, разрывов трубопровода и прочих факторов, поэтому электродвигатели для насосов должны иметь некоторый запас мощности. Чем больше мощность, тем меньше коэффициент запаса можно принять.

Например,при мощности электродвигателя насоса 2 кВт – kз = 1,5, 3,0 кВт – kз = 1,33, 5 кВт – kз =1,2, при мощности больше 10 кВт- kз = 1,05 – 1,1. Другие параметры означают: ηп – КПД передачи (прямая передача – 1,0, клиноременная – 0,98, зубчатая – 0,97, плоскоременная – 0,95), ηн — КПД насосов поршневых 0,7 – 0,9, центробежных 0,4 – 0,8, вихревых 0,25 – 0,5.

Электрические двигатели троллейбуса

Внещний вид электродвигателя

Составные части электродвигателя ДК-210А-3

1 — щит подшипника; 2 — коллектор; 3 — корпус; 4 — добавочный полюс; 5 — якорь; 6 — якорные катушки; 7 — катушка добавочного полюса; 8 — вентилятор; 9 — щит; 10 — крышка; 11 — вал; 12 — подшипник; 13 — главный полюс; 14 — катушка главного полюса; 15 — сердечник; 16 — гайка коллектора; 17 — втулка коллектора, 18 — подшипник; 19 — вентиляционный патрубок; 20 — крышка подшипника; 21 — коллекторный стакан; 22 — прижим щеткодержателя; 23 — пластина крепления щеткодержателя.

Читать еще:  Что нужно соблюсти при сборке двигателя

Чертеж электродвигателя

1 — паз якоря; 2, 4, 26, 27 — подшипниковые крышки; 3 — роликовый подшипник; 5 — кольцевая гайка; 6 — кронштейн щеткодержателя; 7 — вентиляционный патрубок; 8, 24 — подшипниковые щиты; 9, 14, 22 — прижимная шайба; 10 — прокладка; 11 — коллекторная втулка; 12 — обойма щеткодержателя; 13 — коллекторная пластина; 15 — крышка люка; 16 — корпус; 17, 18 — катушки главного полюса; 19 — шпилька; 20 — обмотка якоря; 21 — пакет якоря; 23 — вентиляционные окна; 25 — вентилятор; 28 — шарикоподшипник; 29 — замки крышек люков; 30 — сердечник добавочного полюса; 31 — катушка добавочного полюса; 32 — сердечник главного полюса.

Схема электрических соединений

Описание электродвигателя

Тяговый двигатель ДК-210А-3 состоит из следующих основных частей: корпуса, главных и дополнительных полюсов, якоря, щеткодержателей со щетками, подшипниковых щитов и вентилятора.

Корпус 16 служит основным магнитопроводом тягового двигателя. Он отлит из специальной стали, обладающей высокой магнитной проницаемостью. Корпус цилиндрической формы по внутреннему диаметру имеет расточку для установки главных и дополнительных полюсов. Главные полюса расположены под углом 45° к горизонтали, дополнительные имеют горизонтально-вертикальное расположение.

Для осмотра коллектора и щеткодержателей в корпусе предусмотрены четыре люка, которые закрываются двумя крышками 15 с уплотнением из губчатой резины. С противоположной стороны по окружности расположены шесть прямоугольных вентиляционных окон 23, защищенных по контуру стальным проволочным заграждением. Для выводных концов обмотки якоря и полюсов в корпусе служат шесть отверстий, армируемых резиновыми втулками. Внутри корпус, за исключением мест под посадку полюса, покрыт серой электроэмалью, снаружи — черным битумным лаком для предохранения от коррозии.

Главный полюс двигателя предназначен для создания основного магнитного поля, которое, взаимодействуя с током, проходящим по проводникам обмотки якоря, приводит якорь во вращение.

Главный полюс состоит из сердечника и катушки. Сердечник 32 набирается из отдельных штампованных стальных листов толщиной 1,5 мм, спрессованных и стянутых заклепочными стержнями. Катушка главного полюса состоит из двух обмоток: последовательной 18 и параллельной 17.

Магнитный поток последовательной обмотки возбуждения зависит от нагрузки двигателя. С увеличением сопротивления движению троллейбуса (например, на тяжелом профиле пути) двигатель будет потреблять из контактной сети больший ток. При этом увеличится магнитный поток, создаваемый последовательной обмоткой возбуждения, и возрастет вращающий момент двигателя, а скорость движения троллейбуса автоматически снизится.

Магнитный поток параллельной обмотки возбуждения зависит только от тока возбуждения. Изменяя ток в параллельной цепи двигателя, а следовательно, магнитный поток параллельной обмотки возбуждения, можно регулировать в широких пределах частоту вращения якоря двигателя в тяговом режиме и тормозное усилие при электрическом торможении.

Главные полюса крепятся к корпусу на трех шпильках 19, ввинченных в сердечник полюса. Гайки шпилек залиты специальной замазкой. Обмотки последовательного возбуждения главных полюсов соединены друг с другом последовательно. Выводы концов маркируются С-С2. Обмотки параллельного возбуждения соединены также последовательно. Выводы концов их маркируются Ш1-Ш2.

Дополнительные полюса предназначены для улучшения коммутации (для уменьшения искрения между щетками и коллектором). Коммутацией называется процесс перехода секции обмотки якоря из одной параллельной ветви в другую, т. е. процесс изменения направления тока в секции якоря.

Ток, проходящий по обмотке якоря, создает собственное магнитное поле, которое взаимодействует с основным магнитным полем двигателя. Воздействие магнитного поля якоря на основное поле двигателя называется реакцией якоря. Реакция якоря нарушает правильную коммутацию, вызывая искрение под щетками. Воздействие реакции якоря, вызывающее искрение на коллекторе, устраняется с помощью дополнительных полюсов, которые размещены между главными полюсами по оси коммутируемых секций, замыкаемых накоротко щетками.

Ширину полюсов выбирают небольшой, чтобы магнитное поле их действовало только в зоне, где происходит коммутация. Чтобы магнитное поле дополнительных полюсов компенсировало э. д. с. реакции якоря при различных нагрузках, обмотку этих полюсов включают последовательно с обмоткой якоря, в результате чего магнитное поле изменяется пропорционально нагрузке.

Сердечник 30 дополнительного полюса представляет собой механически обработанную стальную отливку (сталь 25Л), катушка 31 изготовлена из шинной меди. Катушки дополнительных полюсов соединены друг с другом и с якорем последовательно. Выводы концов маркируются Д1-Д2. Все концы, выходящие из двигателя: C1-С2, Ш1-Ш2, Д1-Д2, выведены в клеммовую (моторовводную) коробку.

Якорь двигателя состоит из вала 1, сердечника 21, обмотки 20 и коллектора 13. Вал якоря изготовлен из катаной углеродистой конструкционной стали 45 (вязкой, высокого механического качества) с последующей термообработкой. Диаметр вала изменяется ступенчато по его длине. Сердечник набирается из отдельных штампованных листов электротехнической стали (слаболегированная прокатанная сталь с небольшим содержанием кремния) толщиной 0,5 мм. Листы покрывают лаком для уменьшения потерь энергии на вихревые токи, возникающие при пересечении якорем магнитного потока. На валу якоря сердечник удерживается шпонкой между двумя нажимными шайбами 14 и 22. Пакет имеет 35 пазов для обмотки якоря и вентиляционные отверстия для охлаждения сердечника якоря воздушным потоком.

Обмотка 20 якоря волновая двухслойная, состоит из 35 катушек. Катушка имеет пять секций, выполненных из шинной меди. Обмотка якоря удерживается в пазах клиньями из стеклотекстолита, а вылетные части — бандажами.

Читать еще:  Эксплуатационные характеристик судовые двигатели

Коллектор двигателя предназначен для распределения тока по обмотке якоря. Коллектор арочного типа, имеет 175 коллекторных пластин, изготовленных из кадмиевой коллекторной меди, обладающей в сравнении с обычной вдвое большей износостойкостыо. Коллекторная пластина 13 (см. рис. 87) состоит из рабочей поверхности, петушка и ласточкина хвоста. Все пластины коллектора зажаты между конусами втулки 11 и шайбы 9 с помощью кольцевой гайки 5. Друг от друга они изолированы мика-нитовыми прокладками, а от втулки и шайбы — миканитовыми конусами и цилиндром. Петушки коллекторных пластин имеют шлицы, в которые запаяны концы обмотки якоря. В каждую пластину запаян конец одной секции и начало другой. Коллекторная втулка на валу якоря сидит на шпонке.

В двигателе четыре щеткодержателя, установленных под углом 45° к горизонтали. Обойма 12 щеткодержателя литая, латунная, крепится к стальному кронштейну 6 на шпильке и фиксируется накладкой 10 с ребристой поверхностью. Накладка прижата к приливу обоймы корончатой гайкой, которая шплинтуется. Поверхность прилива обоймы также ребристая, со сквозной овальной прорезью, что позволяет регулировать установку обоймы. Кронштейн крепится к подшипниковому щиту 8 двигателя двумя шпильками, изолированными от него пластмассовыми и фарфоровыми изоляторами.

В каждом щеткодержателе установлены две щетки марки ЭГ-2Л (или ЭГ-14). К щеткам ток подводится через нажимные пальцы, которые соединены с обоймой, щеткодержателя гибким плоским шунтом. Эти же пальцы создают нажатие щеток на коллектор с помощью спиральных ленточных пружин. Один конец пружины входит в разрез регулировочной втулки, к другому заклепками крепится нажимной палец. Регулировку натяжения пружины осуществляют, поворачивая втулку на валике обоймы. Усилие нажатия пальца на щетку должно быть 2 кгс/мм2. Положение регулировочной втулки зафиксировано шплинтом.

Вентилятор 25 предназначен для создания потока воздуха с целью охлаждения двигателя. Он отлит из силумина и крепится заклепками к стальному фланцу, который сидит на валу якоря на шпонке. Воздух забирается вентилятором через вентиляционный патрубок 7 со стороны коллектора и выбрасывается через вентиляционные окна 23. Вентиляционный люк в патрубке и окна защищены стальными сетками.

Подшипниковые щиты 8 и 24 отлиты из стали. Их ставят с тугой посадкой в расточку корпуса. В средней части щитов установлены подшипники, в которых вращается якорь: со стороны коллектора — цилиндрический радиальный роликовый подшипник 3, со стороны вентилятора — шариковый подшипник 28.

Для якорных подшипников применяют смазку типа 1 -13 жировую, которую закладывают при сборке двигателя. Добавляют смазку после пробега 16-17 тыс. км через отверстия в подшипниковых крышках 2 и 27, закрываемых болтовыми пробками.

  • Главная страница
  • Аналоговый тахометр
  • Реверс двигателя
  • TDA1085C
  • ШИМ-регулятор
  • ШИМ-регулятор 220 В
  • ШИМ-регулятор 220 В ( IGBT )
  • ШИМ-регулятор на Arduino
  • Заказ плат в Китае
  • PCBWay
  • TDA1085 и др. двигатели
  • Подключение педали
  • Опторазвязка
  • Тахометр на Arduino+OLED
  • ШИМ с общим минусом.
  • Простой ШИМ на NE555
  • Мощный регулятор на TDA1085
  • Датчик скорости на LM393
  • Регулятор «Оптима» на TDA1085
  • Регулятор «Optima_PP»

ШИМ-регулятор

ШИМ-регуляторы все работоспособны , проверил их работу с помощью двигателя от шуруповёрта.
Снял видео —



139 комментариев:

Частота ШИМа около 40 КГц?

Честно говоря уже точно не помню, в районе 10 — 15 кГц

мска слаба . если кто частоту повышает и уберает свист .то пт 2шт непотянетнужна раскачка пред выход то можно тогда снимать и токи большие для электро велло .

Накидал на макетке схему 1, питание 12,5В, подключил 12В моторчик от шуруповёрта.
1. Обороты изменяются, НО на любых оборотах можно остановить двигатель рукой. Что не так?
2. На низких оборотах свистит, а именно низкие, до 300 нужны. Как убрать свист?
3. При 12,5В питании и 12В моторчике могу ибойтись без стабилизатора?

1. Не хватает мощности блока питания скорей всего.
2. Да, свистит. Как убрать не знаю, но можно попытаться частоту менять конденсатором С1.
3. Можно

Можно подавать на вход любое напряжение или только 12 вольт?

В приведённых схемах напряжение можно подавать до 25-30 вольт, это напряжение ограничено максимально допустимым входным для стабилизатора 7809.

Добрый день! Ссылки на печатные платы у вас не работают.

Проверил — вроде всё работает.

Я конечно извиняюсь но не одна ссылка не открывается.Я уже отключил все расширения и антивирусник.

Все открылось в другом браузере.

Что бы убрать свист нужно конденсатор c1 поставить на 220 pf (проверено на собранной схеме)

здравствуйте, а для двигателя на 48вольт что можете посоветовать?

В общем , схема такая-же. Только надо правильно запитать схему управления на NE555, а также взять подходящие по току и напряжению полевой транзистор и диод.

Здравствуйте! Собрал схему на 5 ампер. Все регулируется и есть легкий свист как у вас. Скажите, пожалуйста, должно ли меняться напряжение на выходе (на клеммах двигателя) при регулировке или нет?

Конечно, будет меняться. Если измерять тестером на постоянке — то напряжение на двигателе будет изменятся от нуля до напряжения питания. Примерно

Спасибо! Очень признателен! Отличный сайт!

Здравствуйте! скажите на схеме между диодом d1 и переменным резистором стоит резистор 1к на печатке же его нет! Это сделано специально?

Читать еще:  Штатный режим работы двигателя это

Да, вы внимательны, но это не принципиально — в сторону максимума убрано ограничение.

здравствуйте не подскажете что может быть собрал схему на 5 ампер подключил в нагрузку мощный кулер но он работает не стабильно, начинает набирать обороты и сбрасывает и снова набирает и сбасывает и так работает с цикличностью

Наверно не хватает мощности блоку питания — чем запитываете кулер?

Все разобрался! Объясню может кому пригодится! Запитывал мощный кулер с током потребления 3,5 А, кулер 4-х пиновый, порыскал по форумам оказалось что для управления такими кулерами не хватает только двух проводов питания нужен управляющий провод (синий)! Подключил так, плюс и минус от блока питания а синий провод питается от стока IRF540

Где купить готовый ШИМ на шуруповёрт

http://got.by/vr019 -можно тут купить

Спасибо а он точно при низких оборотах не потеряет тягу?

Нужен такой как на видео.

Я их делал только для видео и у меня остался ещё на 10 А. Напишите мне на почту roshansky@mail.ru

В Китае можно купить —
http://ali.pub/3zl5i

можно в китае заказать
могу дать ссылку

На печатной плате, между 1 и 8 ножкой стоит конденсатор. На схеме его нет. На фото ШИМ 5 А, он четко виден. Скажите пожалуйста номинал этого конденсатора. Про R2 уже прочитал в комментариях.

Это не принципиально — дополнительно 0.1 мкф по питанию микросхемы.

здравствуйте необходимо инвертировать управление по плюсу,помогите со схемой.

Не схеме нет, а на плате есть резистор со входа + на вход стабилизатора. Для чего? Номинал?

Это просто перемычка — 0 ом

Первую схемку накидал на макетке год назад — работала, правда свистела.

Сегодня протравил Вашу, спаял — не работает. Двигатель от шуруповёрта дёргается, но не крутится. На выходе БП 12В напряжение в такт дёрганью мотора просаживается до 0.
Подключил вместо моторчика лампу 12В 21 Вт — при любом (кроме одного крайнего) положении переменника лампочка ритмично два раза раскаляет нить до красна (но не светится), затем, на третий такт, вспыхивает и горит ярко. Регулировка не работает.
БП китайский 12В 5А тянет автолампу 12В 55А. Пробовал заменить его на 14В АКБ от шуруповёрта — там уж ТОЧНО ток порядочный — тоже самое. Провода между БП, ШИМ и двигателем 2,5мм2 10 см. Переменник припаян на проводах 5 см.

Конденсатор С1 поставил 220 pf.

Добавлю — речь про 5А схему.

Эта схема проверена и много раз. Посмотрите осциллографом что у вас на 3 выходе NE555. Должны быть чёткие прямоугольные импульсы и скважность должна изменяться когда мы крутим переменный резистор. Может быть кондёр С1 маловат, попробуйте запаять больше — 1000 пФ
И какая у вас частота ШИМ получается?

Заработала. Оказалась неисправной микросхема из магазина. Бывает.

Большое спасибо Максим Тишкову за совет по изменению конденсатора — теперь не свистит.

. то ли я в лыжи обутый то ли схема так себе .

Мне для работы нужна лабораторная мешалка, компактная, мешать от 100 мл до 3 литров. 99 % времени обороты 250 об/мин. Вытравил плату, спаял. БП — с Али 12В 5А. Мотор — от шуруповёрта на 12В, магазин «Радио».
На таких оборотах вращение НЕРАВНОМЕРНОЕ, мешалка время от времени останавливается (а я должен быть уверен, что она мешает, пока я другими делами занят. ). ОСТАНАВЛИВАЕТСЯ от ЛЁГКОГО прикосновения пальца к валу.

Вот https://yadi.sk/d/Tdlv-Lky3MN6am ссылка на фото — общий вид и компоновка. Жёлто-зелёные провода — ПВЗ-2,5.

МОИ ИЗМЕНЕНИЯ в схеме:
1. Чтобы увеличение оборотов мотора происходило при вращении переменника ПО часовой стрелке, поменял местами крайние провода переменника.
2. Чтобы ограничить максимальную частоту вращения, на одну из крайних ножек повесил сопротивление 70кОм*3=210кОм
3. Чтобы не свистела при работе — С1 — 220 пФ.

ВОПРОСЫ:
1. Почему нестабильное вращение на малых оборотах?
2. Почему вращение останавливается «силой мысли»?

ЗЫ Заказал на Али ШИМ за 180 рублей. Посылка уже в Москве, посмотрю как он держит МАЛЫЕ обороты.

ЗЫЫ Мой старенький осцил после 5 лет в гараже приказал долго жить 🙁 Посмотреть импульсы нечем 🙁

Т.е. мне бы регулировку 0-1000 об/мин с нелинейной зависимостью (переменник В?)

Чтобы держали стабильно малые обороты при изменяющейся нагрузке нужна обратная связь по оборотам. Как вариант — контроллер ( например Ардуино) — выход ШИМ — обратная связь от таходатчика ( например датчик Холла ) — программа которая поддерживает обороты двигателя. Силовая часть стандартная.

Неверно выразился-получил бесполезный совет. Сам виноват.

Наливаю воду в стакан, опускаю мешалку, выставляю на глаз 250 об/мин. Мешалка вращается, обороты, на глаз, стабильны, всё в порядке. Нагрузка НЕИЗМЕННАЯ — вода!
Затем, НЕ периодично (от нескольких десятков секунд до нескольких минут) ОСТАНАВЛИВАЕТСЯ.

Как В ЭТОЙ схеме обеспечить:
1. Стабильную работу на оборотах от 150?
2. Ограничить максимальные 1000-15000?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector