0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что происходит при запуске асинхронного двигателя

Устройство плавного пуска электродвигателя. Как это работает.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами «номинал в номинал». Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска

При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил. Тогда Iном софтстартера должен быть в 8-10 раз больше.

Читать еще:  Что такое механизмы двигателя

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

— некоторая электротехника может самопроизвольно отключаться;

— возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

Читать еще:  Электронаддув двигателя своими руками

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Есть отличная альтернатива устройству плавного пуска. Стоимость отличается, но и функциональные возможности расширенные.

Преобразователь частоты – это решение задачи, когда требуется регулирование скорости электродвигателя и автоматизация работы технологичного оборудования через обратную связь посредством датчика. При помощи преобразователя Вы сможете решить более сложные и разносторонние вопросы по автоматизации электропривода.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Виды устройств плавного пуска

Производители выпускают механические и электрические устройства плавного пуска. Они отличаются не только конструктивно, но и по принципу действия.

Механические УПП – простейшее оборудование, предназначенное для принудительного ограничения роста скорости вращения вала. Для ее регулирования используются магнитные блокираторы, тормозные колодки и другие подобные приспособления.

Электрические УПП – современное оборудование, в конструкции которых предусмотрены параллельно соединенные тиристоры, ограничивающие напряжение, поступающее на двигатель. В некоторых устройствах, например, в таких, могут использоваться IGBT-транзисторы.

На старте значение тока максимально, поэтому энергия должна подаваться быстро, а выходить – медленно. Добиться этого можно, ограничив напряжение и контролируя значение пускового тока, что и делают УПП.

При уменьшении значения тока разгон двигателя требует больше времени, но это неудобство компенсируется плавным увеличением скорости.

Еще один важный момент использования устройств плавного пуска. Значение пускового тока не должно быть слишком низким, так как двигатель не сможет набрать рабочую скорость. Достаточно снизить его значение до 250% от номинального. Для сравнения, при прямом запуске асинхронного привода оно достигает 500-800% от номинального.

Принцип действия устройства плавного пуска

Механические устройства плавного пуска — тормоза, гидравлические муфты и прочее. Такие устройства физически тормозят двигатель на старте, тем самым не позволяя ему быстро набирать обороты.

Электрические устройства плавного пуска — изменяют питание двигателя и бывают нескольких видов в зависимости от схемы запуска:

«Звезда-треугольник» — принцип основан на подключении трех катушек с использованием реостата, вначале сопротивление максимальное, но по ходу набора оборотов двигателя оно падает

Плавный пуск электродвигателя с изменением тока и напряжения – в этой схеме изменения достигаются, например, за счет реостата или автотрансформатора. Но наиболее успешные решения — это применение семисторных схем.

Семисторные устройства плавного пуска:

Плавный пуск асинхронного электродвигателя: реализация

Семисторы — это сверхбыстрые электрические ключи, которые могут за счет быстрого включения (пропускают через себя ток) и выключения (ничего не пропускают) формировать выходное напряжение уже с другой частотой (квазисинусоиду).

В начале разгона двигателя, напряжение на выходе устройства плавного пуска имеет низкую частоту. Далее частота увеличивается, согласно выбранным настройкам разгона. А так как обороты двигателя напрямую зависят от питающей частоты, это позволяет производить плавный набор скорости вращения электродвигателя.

При останове все происходит так же, только в обратную сторону.

Три наиболее распространенные схемы устройства плавного пуска.

Схема устройства плавного пуска для однофазного асинхронного электродвигателя. Она основана на двух семисторах, установленных на встречу друг другу.

Такая схема может еще применяться и для плавного пуска асинхронного двигателя от трех фаз, когда достаточно модулировать только одну фазу. Например, при легком пуске, и мощность двигателя — несколько киловатт .

Вторая схема — это модуляция по двум фазам. Она применяется, когда мощность у двигателя уже большая ( до нескольких сот киловатт ), но ограничения по току обеспечивать нет необходимости.

Основной плюс такой схемы — плавный пуск электродвигателя, который обходится дешевле, чем полноценная трехфазная модуляция.

Последняя схема — это полноценное трехфазное модулирование. Из плюсов — возможность контроля над пусковыми токами, наиболее качественный плавный пуск асинхронного электродвигателя и остановка. Из минусов — цена, т. к. на всех трех фазах установлены семисторы, а они — наиболее дорогая деталь устройства плавного пуска .

Читать еще:  Что такое двигатели fire

Выше мы ознакомились с основными принципами работы устройств плавного пуска. Самостоятельно подобрать необходимое Вам устройство можно в разделе устройства плавного пуска

Как рассчитать сечение кабеля для электродвигателя?

В общем случае выбор сечения и марки кабеля для подключения двигателя входит в задачи проектирования. Ввод нового объекта, ремонт или реконструкция уже эксплуатирующегося, выполняются в соответствии с проектом. Проектировщики в своей работе учитывают различные факторы, влияющие на результаты выбора:

  • мощность подключаемого электродвигателя;
  • материал токопроводящих жил кабеля;
  • длину питающей кабельной линии;
  • вид кабельной трассы и способ прокладки.

Кроме этого, проверяется термическая стойкость кабеля при протекании ударного тока короткого замыкания в течение времени срабатывания защит.

Упрощенные методы расчета сечения для двигателя

Для самостоятельного подбора кабеля для трёхфазного двигателя можно пользоваться приближёнными методами. Для оценки величины номинального тока трёхфазного электродвигателя напряжением 380 вольт нужно мощность двигателя, выраженную в киловаттах умножить на два. Полученное значение приблизительно соответствует рабочему току в амперах. Как правило, оно несколько больше фактического значения, что создаёт определённый запас. Если есть возможность, то значение тока стоит уточнить на шильдике двигателя.


Шильдик двигателя

По одной из таблиц, приведённых в ГОСТ или Правилах Устройства Электроустановок, подбирается требуемое сечение, соответствующее найденному значению тока. Нужная таблица выбирается с учётом материала жил и метода прокладки проводников. Полученное сечение соответствует условиям нагрева при длительном протекании заданной величины тока. Если кабель предполагается прокладывать во взрывоопасной зоне категории В – 1а, расчётное значение тока умножается на поправочный коэффициент 1,25.

При большой протяжённости питающего кабеля (более 70 – 100 метров) может происходить существенное падение напряжения. Расчёт величины падения напряжения проводится для значения пускового тока.

Для очень грубой оценки при выборе кабеля по мощности двигателя в «полевых условиях» допустимо применять правило: одному киловатту мощности соответствует 1 мм 2 сечения кабельной жилы. Во всяком случае, при мощности электродвигателя до 50 кВт включительно, такой способ выбора допустим.

В случае необходимости этот принцип может быть использован при подборе моторного кабеля для питания асинхронного двигателя от частотного преобразователя.

Расчет пускового момента

Пусковой момент, который зависит от номинального усилия на валу и кратности пускового момента, можно вычислить по формуле:

  • Мн — номинальное усилие на валу электродвигателя;
  • Кпуск.— кратность пусков, паспортная величина, которая принимает значения от 1,5 до 6.

На практике применяют другую формулу:

Необходимые данные указываются на шильдике двигателя или в паспорте, где F1 — номинальные обороты.

Р2 равна номинальной мощности в кВт, является расчетной величиной.

Для того, чтобы узнать значение Р2, следует воспользоваться формулой, в которой учитываются пусковой ток, напряжение сети, скольжение. Эти данные можно узнать в паспорте, справочнике или на сайте завода-изготовителя.

Реостатный пуск асинхронного двигателя с кз ротором.

Если невозможно запустить АД с кз ротором в стандартном режиме, используют запуск при сниженном напряжении. С этой целью в цепь статора добавляют сопротивление, реостат или используют автотрансформатор. Автоматический выключатель QF срабатывает и на управляющую и силовую цепь поступает напряжение. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В то же время питание поступает и на реле времени КТ.

Рисунок 2 — Схема асинхронного двигателя с симметричными сопротивлениями (реостатный пуск)

Через определенный временной интервал, задаваемый реле КТ, происходит замыкание контакта КТ. В итоге пускатель КМ2 шунтирует (закорачивает) сопротивление статора. Процедура запуска электродвигателя завершается. Для его выключения необходимо нажать клавишу SB2 и выключить автомат QF.

Использование конденсатора

Метод отличается от предыдущего тем, что мотор с расщепленной фазой при подключении к однофазной линии, имеет высокое сопротивление только в момент запуска.

Для обеспечения наибольшего значения Мпуск необходимо круговое и вращающееся магнитное поле. Для этого токи в рабочей и дополнительной обмотках смещают на 90 градусов. Такое смещение может обеспечить только конденсатор. Его использование помогает достичь хорошей пусковой характеристики асинхронного двигателя, питающегося от однофазной электросети.

Выбор способа пуска асинхронного электродвигателя зависит от того, к какой сети он включается: к однофазной или трехфазной. Влияет также мощность мотора и его конструкция.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector