0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что означает тактность двигателя

Компания ECHO использует 2 типа конструкции двигателей — с пластинчатым клапаном и с поршнем. Внешний вид и сложность определения неисправности могут отличаться при осмотре частей этих двух типов двигателей. Помните о разнице между двигателями при анализе неисправности двигателя.

ДВИГАТЕЛЬ С ПЛАСТИНЧАТЫМ КЛАПАНОМ.

На этих двигателях карбюратор обычно установлен напрямую на картер двигателя и отделен от картера пластинчатым клапаном. Пластинчатые клапаны в основном используются на двигателях с небольшим объемом, когда требуется стабильная работа и мощность на низких оборотах двигателя.

Работа двигателя с пластинчатым клапаном.

При движении поршня вверх создается разрежение в картере. Под действием разрежения открывается пластинчатый клапан, и топливная смесь впрыскивается в картер. При движении поршня вниз создается давление в картере, пластинчатый клапан закрывается и предотвращает вытекание топливной смеси из картерах. Пластинчатые клапаны весьма эффективны на двигателях, развивающих приблизительно до 7000 оборотов.

В двигателе с пластинчатым клапаном:

  1. Требования смазки двигателя с пластинчатым клапаном не такие критичные, как поршневого двигателя;
  2. Смазка и охлаждение опорных подшипников коленвала, поршневого пальца, подшипников поршневого пальца, и нижнего участка цилиндра имеет преимущество на двигателях с пластинчатым клапаном, потому что топливо попадает непосредственно в картер;
  3. Зоны, которые в первую очередь страдают, когда двигатель с пластинчатым клапаном загрязняется, следующие:
  • коленвал,
  • подшипники шатуна коленвала,
  • нижний участок цилиндра,
  • поршень со стороны выпуска;

4. Зоны, которые менее подвержены загрязнению:

  • стенки и края поршня,
  • поршневые кольца,
  • верхняя часть цилиндра.

ПОРШНЕВОЙ ДВИГАТЕЛЬ.

На двигателях данного типа карбюратор соединяется с цилиндром через теплоизолирующую проставку. Роль клапана выполняет поршень. Поршневые двигатели используются там, где необходима высокая скорость вращения привода.

Работа поршневого двигателя.

При движении поршня вверх в картере создается разряжение, открывается входное отверстие, и топливная смесь попадает в кривошипную камеру. Когда поршень опускается вниз при рабочем ходе, порция смеси внутри картера начинает сжиматься. В то же время край поршня начинает закрывать входное отверстие.
Пока порция топливной смеси внутри картера находится под повышенным давлением, небольшое количество смеси на малых оборотах двигателя может выйти из картера обратно в карбюратор. Это явление называется «обратный выброс». По этой причине поршневые двигатели обычно очень хороши на высоких скоростях, но менее эффективны на низких скоростях из-за «обратного выброса».

В поршневых двигателях:

1. Смазка и охлаждение стенок цилиндра, краев поршня и поршневых колец лучше, чем на двигателе с пластинчатым клапаном;
2. Зоны, которые в первую очередь страдают, когда поршневой двигатель загрязняется, следующие:

  • поршень и поршневые кольца,
  • верхняя часть цилиндра над выходным отверстием

3. Зоны, которые менее подвержены загрязнению:

  • коленвал,
  • опорные подшипники,
  • поршень со стороны выпуска,
  • нижний край зоны цилиндра под входным отверстием.

ИНФОРМАЦИЯ ПО СЕРВИСУ.

При анализе неисправности, важность критичности технических характеристик двигателя имеет основное значение. Настройки карбюратора, обороты двигателя, основные технические характеристики двигателя являются наиболее важными для точного анализа неисправности 2х-тактного двигателя. Для подтверждения основных настроек карбюратора, холостого хода, максимальных оборотов; двигателя, обратитесь к сервисной информации или руководству по выполнению сервисных работ.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ.

Компрессометр — это прибор для измерения компрессии двигателя. Специально спроектирован для двигателей с небольшим объемом двигателя (меньше 125 см3/цилиндр). С помощью компрессометра можно выявить механический износ рабочей поверхности цилиндра, поршня или поршневых колец. Нормальная компрессия рабочего двигателя находится в пределах 9,5-11 кг/см2 в зависимости от конструктивных особенностей двигателя. Значение компрессии 7 кг/см2 и ниже свидетельствует о большом износе рабочих поверхностей цилиндра, поршня, поршневых колец. При таком значении компрессии двигатель теряет мощность, либо его невозможно завести. Значение компрессии 12 кг/см2 и выше свидетельствует об образовании большого количества нагара внутри двигателя.

ПРИМЕЧАНИЕ! Новый двигатель, как правило, имеет компрессию немного ниже, чем заявлено в технических характеристиках. Потребуется выработать 3-4 полные заправки топливного бака, прежде чем двигатель будет работать на полную мощность.

Тестер зажигания — С помощью тестера зажигания можно проверить работоспособность свечи зажигания и магнето.

Тестер давления и разряжения — С помощью тестера проверяется герметичность картера на отсутствие посторонних подсосов воздуха. Таким образом, проверяется рабочее состояние сальников коленвала, наличие скрытых дефектов в картере двигателя, герметичность деталей топливной системы. Тестером можно проверить герметичность карбюратора.

Цифровой тахометр ECHO — Основное назначение электронного тахометра — проверка и настройка карбюратора, и соответственно, настройка максимальных оборотов и оборотов холостого хода двигателя.

СИСТЕМА ЗАЖИГАНИЯ.

Для правильной диагностики неисправностей двигателя, вы должны в первую очередь понимать последние усовершенствования в конструкции двигателя и системные технологии, встречающиеся в сегодняшних двигателях. В первую очередь должны понимать как работает система зажигания двигателя, какие системы зажигания применяются на современных двухтактных двигателях.

1. Система C.D.I. (Capacitor Discharge Ignition) — система зажигания, в которой используется разряд конденсатора.

Вся энергия искрообразования накапливается в конденсаторе. В блоке магнето есть две катушки. Одна, при прохождении магнита маховика мимо сердечника вырабатывает ток, который заряжает конденсатор, вторая — управляющая, она играет роль датчика, запускающего искрообразование. Управляемый диод (тиристор) не пропускает ток, пока на него не будет подан сигнал определенной силы. Стоит магниту пройти мимо сердечника управляющей катушки, в обмотке появляется электрический импульс, отпирающий тиристор блока управления. Накопившийся в конденсаторе заряд выстреливается в первичную обмотку катушки зажигания. Та, благодаря эффекту электромагнитной индукции. возбуждает ток во вторичной обмотке. Во вторичной обмотке витков провода в сотни раз больше, чем витков провода в первичной обмотке, поэтому напряжение на выходе составляет 20-40 киловольт. Подача высокого напряжения на свечу и, соответственно, образование искры, происходит в точно определенный момент времени.

Такая система имеет один недостаток — при уменьшении оборотов коленвала напряжение на конденсаторе, а значит и вторичный разряд, падает. На малых оборотах коленвала возможна нестабильная работа двигателя. Необходима более тщательная настройка карбюратора на обороты холостого хода. Система CDI обеспечивает мощную, но кратковременную искру. При такой системе угол опережения зажигания подобран опытным путем, так, чтобы двигатель стабильно работал на всех режимах. В чистом виде система C.D.I. применяется все реже и реже.

Читать еще:  Высокие обороты холостого хода на прогретом двигателе ваз

2. C.D.I. S.A.I.S. (Step Advance Ignition System) — конденсаторная система с регулировкой угла опережения зажигания для оптимального режима работы двигателя.

3. Digital C.D.I. V.S.T. (Variable Slope Ignition Timing System) — конденсаторная система с установкой угла зажигания (разрежения и запаздывания) для оптимального режима работы двигателя. Данная система также не допускает превышения максимально допустимых оборотов двигателя.

4. Система T.C.I. (Transistor Controlled Ignition) — транзисторная система зажигания. Дословно — зажигание, контролируемое транзистором. Система T.C.I. вырабатывает так называемую «длинную искру», продолжительностью до 1-1,5 миллисекунды. Искра такой продолжительности способна воспламенить смесь с отклонениями от нормального состава. Секрет «длинной» искры в том, что ее создает не короткий «выстрел» энергии конденсатора, а накопленная катушкой зажигания солидная «порция» электромагнитной индукции.

СВЕЧА ЗАЖИГАНИЯ.

Свеча является важнейшим элементом системы зажигания, так как от устойчивости и своевременности искрообразования зависит стабильность работы двигателя. В двигателе свеча выполняет две основные функции — воспламеняет топливную смесь и отводит тепло из камеры сгорания.

У различных двигателей температура в камере сгорания повышается по-разному, поэтому необходимы свечи зажигания с разным тепловым эквивалентом. Этот тепловой эквивалент условно выражается в виде, так называемого, калильного числа.
Данный параметр является условным и обозначает время в секундах, по истечении которого, на свече возникает калильное зажигание, т.е. воспламенение рабочей смеси происходит не от искры, а от раскаленных электродов свечи. Оптимальная рабочая температура свечи находится в пределах от 400С° до 900С° (диапазон самоочищения), вне зависимости от того, где используется свеча, в двигателе газонокосилки, бензопилы или автомобиля. При такой температуре удаляются осаждающиеся сажа и масляный нагар, и таким образом происходит самоочищение свечи зажигания.

Если температура кончика свечи ниже 400С° (диапазон отложений), температура поверхности изолятора, окружающего центральный электрод, будет недостаточной для сгорания углеродных и прочих отложений. Накопление отложений может вызвать загрязнение свечи, что ведёт к пропускам зажигания или выходу свечи из строя.

Если температура кончика выше 900С°, свеча будет перегреваться, что может вызвать повреждение керамической оболочки центрального электрода и плавление электродов. Это может также привести к калильному зажиганию, когда топливо воспламеняется не от искры, а от раскаленного электрода. Появление калильного зажигания приводит к появлению детонации и серьёзному повреждению двигателя.

Температура рабочего конца свечи должна поддерживаться достаточно низкой для предотвращения калильного зажигания и, одновременно, достаточно высокой для предотвращения образования нагара. Зависимость температуры теплового конуса изолятора и центрального электрода (рабочей температуры свечи) от режима работы двигателя, называется тепловой характеристикой свечи.

Исходя из тепловой характеристики, все свечи можно условно поделить на «горячие» и «холодные». Понятие «холодная» или «горячая» свеча не означает температуру свечи. Это характеристика эффективности отвода тепла от электродов.

  • «Горячий» тип свечи — развитая поверхность контакта с газами камеры сгорания. Медленный отвод тепла. Быстрый нагрев рабочего кончика свечи.
  • «Холодный тип» свечи — небольшая поверхность контакта с газами камеры сгорания. Быстрый отвод тепла. Медленный нагрев рабочего кончика, свечи.

Высокая производительность

Двигатель
Мотоцикл оснащен системой впрыска топлива. Система содержит две топливных форсунки, установленные непосредственно в каналах продувки цилиндра, которые снабжают двигатель идеальным количеством топлива во всех режимах его работы. Это не только снижает расход топлива и уровень вредных выбросов в атмосферу, но также делает отдачу двигателя более плавной, выводя всеми любимый 2х тактный мотор на новый уровень.

Цилиндр
Цилиндр имеет специальную конфигурацию продувочных каналов, в которых установлены две топливные форсунки. Топливо подается вниз продувочного канала, что обеспечивает превосходное смешивание с потоком воздуха, двигающимся наверх к камере сгорания. Это обеспечивает лучшее наполнение цилиндра и полноту сгорания топлива, что приводит к снижению потребления топлива и выбросов.

Картер
Для снижения веса картер литой и имеет тонкостенную конструкцию. Расположение вала тщательно выверено с целью централизации массы. Кроме того, корпус помпы улучшает охлаждение за счет оптимизации потока охлаждающей жидкости.

Выхлоп
Разработанная с использованием инновационного трехмерного проектирования, выхлопная труба обладает ещё лучшей геометрией и производительностью. За счет изменения формы увеличился дорожный просвет, а рифленая поверхность лучше защищает трубу от замятий. Глушитель также оснащен новым алюминиевым монтажным кронштейном и новыми внутренними деталями.

Инженерия как искусство

Стальная рама
Рама сделана в WP Performance System с помощью лазерной резки и роботизированной сборки и отвечает всем требованиям инновационных решений в двухтактных моторах. Именно в раме расположен бачок для залива масла, которое автоматически смешивается с топливом. Рама легкая, прочная и идеально сочетается с подвеской WP.

Композитный подрамник
Композитный составной подрамник – уникальная разработка Husqvarna, которая стала возможной благодаря применению новаторских технологий. Он состоит из двух частей и на 30% выполнен из углеродного волокна, благодаря чему узел обладает низким весом при максимальной прочности.

Маслобак и насос
Мотоцикл оборудован электрическим маслонасосом, подающим жизненно необходимое для двигателя масло. Насос располагается немного ниже маслобака и подает масло непосредственно в двигатель, через корпус дроссельной заслонки. Это исключает необходимость предварительно смешивать масло с топливом, как в традиционных 2х тактных двигателях. Насос связан с блоком управления двигателем и подает оптимальное количество масла, согласно текущим оборотам и нагрузке, что снижает дымность отработавших газов и количество отложений в выпускной системе. Маслобак емкостью 0,7 литра находится под топливным баком и соединяется подающим шлангом с внешней заливной горловиной, расположенной выше для удобства заправки. В баке установлен датчик низкого уровня, который сигнализирует о необходимости долить масло.

Охлаждение
Радиаторы искусно изготовлены с использованием высокопрочного алюминия и вычислительной гидродинамики — для более эффективного пропускания воздуха через радиаторы. Система охлаждения интегрирована в раму, исключая необходимость в дополнительных шлангах. Центральная трубка проходящая через раму снижает давление, обеспечивая более равномерный поток охлаждающей жидкости. Кроме того, радиаторы устанавливаются ниже, ближе к центру тяжести, для повышения маневренности при езде. Дополнительный вентилятор радиатора может быть установлен и доступен в каталоге аксессуаров Husqvarna.

Читать еще:  Шевроле круз kl1j какой двигатель

Подвеска

WP XPLOR 48
Передняя вилка WP Xplor 48 разработана специально для эндуро и имеет разделенные функции демпфирования. Сжатие происходит в левом пере, отбой в правом. Регулировка осуществляется с помощью легкодоступных кликеров (30 щелчков) в верхней части вилки. Обновленный поршень среднего клапана вилки обеспечивает более равномерное демпфирование. Вилка полностью регулируемая.

Задний амортизатор WP
Задний амортизатор WP Xact сочетает в себе оптимальные характеристики демпфирования, высокую прочность и низкий вес. Сбалансированное давление улучшает демпфирование и комфорт пилота, также улучшено охлаждение. Амортизатор полностью регулируемый.

Тормозная система Magura
На мотоцикле установлена топовая тормозная система от Magura. Ещё больше контроля и стабильности. 260 мм тормозной диск спереди и 220 мм сзади.

Внешний вид
Футуристическая форма пластика символизирует впечатляющий технологический скачок вперед по сравнению с мотоциклами прошлых лет. Жемчужный синий и электрических желтый окрас несёт в себе дух Швеции. Переработанная эргономика существенно увеличивает контроль и комфорт пилота. Сиденье имеет более низкий профиль и при этом обладает рельефностью для наилучшего сцепления при ускорениях и торможениях.

Премиум технологии

Переключатель карт двигателя
Характеристики двигателя могут быть изменены с помощью смены карт зажигания. Каждый пилот сможет выбрать удобный режим для текущих погодных условий. Для более тонкой настройки режима работы мотора можно изменить пружину в мощностном клапане на более мягкую или жесткую.

Блок дроссельной заслонки
На мотоцикле применяется дроссельная заслонка, регулирующая количество воздуха поступающего в двигатель, и управляемая сдвоенными тросами, соединенными с ручкой газа на руле. В отличии от 4х тактных двигателей в корпус дроссельной заслони поступает не топливо, а масло которое попадает в двигатель вместе с воздухом и обеспечивает надежную смазку коленчатого вала, цилиндра и поршня. Данные о количестве поступающего воздуха поступают от датчика положения дроссельной заслонки в блок управления двигателем, который в свою очередь рассчитывает количество масла и топлива, подаваемого в двигатель. Система холостого хода и система холодного запуска дозируют количество воздуха, проходящего по обходному каналу при закрытой дроссельной заслонке.

Электростартер
ТЕ 300i оснащен новым электрическим стартером, который теперь расположен под двигателем и надежно скрыт от возможных повреждений. Сам стартер стал конструктивно проще и, как следствие, надежнее. Кроме того, на мотоцикл теперь устанавливается более мощный аккумулятор, который при этом обладает малым весом.

Система управления двигателем
TE 300i оснащен электронным блоком управления (ECU), который отвечает за ряд функций. Устройство определяет момент зажигания, количество топлива и масла, впрыскиваемого в цилиндр, и, кроме того, переводит информацию, полученную от различных датчиков, для адаптации значений и внесения поправок для автоматической компенсации температуры и высоты. Это означает, что двигатель всегда работает на оптимальной топливовоздушной смеси на любой высоте.

Скутеры Обслуживание и ремонт

Как известно, практически все автомобили и мотоциклы оборудованы четырехтактными двигателями сгорания. Современные технологии позволяют выжать из них весь потенциал и максимально эффективно использовать его. Тенденция к экономии топлива влечет за собой новые разработки и инновации.

Изначально все скутеры объемом до 50 кубических сантиметров комплектовались исключительно двухтактными двигателями, а мопеды и скутеретты, такие как легендарная Honda Cub — четырехтактными. Этому есть объяснение. Скутер имеет безступенчатую коробку передач в виде вариатора, а вариатор нуждается в постоянно высоких оборотах, при этом пик мощности должен соответствовать скорости вращения коленвала.

Идеальным образом при минимальных расчетах для этой цели подходят двухтактные двигатели.

Мопеды и скутеретты имеют от двух до четырех передач, при этом максимально эффективным двигателем для такой трансмиссии является четырехтактный. Кроме того, он значительно экономичен и тяговит.

Спустя некоторое время после изобретения скутера, инженеры начали задумываться о внедрении маломощного четырехтактного двигателя и на молокубатурники, при этом, по мощности они не должны били уступать своим двухтактным братьям. Также ставилась задача сделать их более экономичными, менее шумными и в значительной мере повысить надежнось.

Применение четырехтактного двигателя объемом до 50 см. кубических на скутере требует значительных вложений, а следовательно увеличения стоимости продукции. Так как деталей стало больше, теперь и ремонт обойдется дороже, а провести ремонт самому будет значительно сложнее. Тем не менее рубеж пройден, и практически все современные скутеры комплектуются четырехтактными двигателями. Основная масса такой техники поставляется из Китая и начинает медленно обретать хоть какое-то качество пластика и прочих деталей, но для приближения к Японской и Европейской технике потребуется еще не мало лет, а в итоге, по достижению подобного качества, и китайские скутеры по цене приблизятся к ним.

Устройство четырехтактного двигателя

Принципиального отличия между двигателями скутера и другой техники нет, на схеме можно посмотреть устройство четырехтактного двигателя в разрезе

а) продольный вид, б) поперечный вид; 1-головка цилиндра, 2-кольцо, 3-палец,4-поршень,5 — цилиндр,6 — картер,7 — маховик, 8 — коленчатый вал,9 — поддон,10 — щека,11 — шатунная шейка,12 — кореннойподшипник,13 — коренная шейка,14 — шатун,15,17- клапаны,16 — форсунка

Ниже на схеме обозначен цикл работы. Как видите, топливо и кислород, поступая в карбюратор, смешиваются в заведомо заданной пропорции, образуя этим самым топливную смесь. Далее она подается в цилиндр, где сжимается поршнем, а затем воспламенятся. После этого газы расширяются и через клапан выпуска, уходят в крбюратор.

Основы четырехтактного двигателя

Когда речь идет о мощности, основным параметром следует отметить объем камеры сгорания, или, как говорят, объем двигателя. Следует отличать полный и рабочий объем.

1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — шатун; 5 — коленчатый вал; 6 — картер; 7 — свеча зажигания

Принцип работы четырехтактного двигателя

Работа двигателя в целом состоит из четырех циклов, это:

  1. Впуск
  2. Сжатие
  3. Расширение
  4. Выпуск

Каждый цикл имеет четкое назначение и воспроизводится с заведомо рассчитанной точностью. Малейшие отклонения в расчетах ведут к понижению мощности и неправильной работе.

Совокупность тактов в работе двигателя. а — впуск; б — сжатие; в — расширение (рабочий ход); г — выпуск; 1 — впускной клапан; 2 — свеча зажигания; 3 — выпускной клапан.

Читать еще:  Включаются вентиляторы охлаждения при холодном двигателе нивы шевроле

Рассмотрим каждый из тактов в отдельности.

Такт впуска

Во время такта впуска, в камеру сгорания подается готовая смесь из кислорода и бензина. Для качественной работы и максимальной отдачи двигателя, эта смесь должна быть в правильных пропорциях. Поэтому очень важна точная настройка карбюратора.

Во время такта впуска, впускной клапан открыт, выпускной зарыт.

Такт сжатия

После того, как в камеру сгорания подается определенное количество смеси, клапан впуска закрывается, а поршень начинает движение от нижней мертвой точки (НМТ) вверх. Во время движения вверх, он сжимает смесь, доводя ее к критическим нормам.

Во время такта сжатия оба клапана закрыты

Такт расширения или рабочего хода

Именно во время третьего такта происходит самый важный процесс в двигателе. Когда уже рабочая смесь сжата, смесь воспламеняется искрой, образуется взрыв. Вследствие теплового расширения, поршень начинает движение вниз, и с большой силой давит через шатун на коленвал. Именно в этот момент происходит рабочий ход. Очень важно, чтобы свеча воспламеняла рабочую смесь в нужный момент, от этого зависит основа правильной работы двигателя, как четырехтактного, так и двухтактного.

Такт расширения (рабочего хода). Клапана по прежнему закрыты.

Такт выпуска

Во время такта выпуска, после расширения, уже отработанные газы через выпускной клапан уходят в глушитель.

Такт выпуска. Впускной клапан закрыт, выпускной открыт.

Глушитель четырехтактного двигателя не выполняет функции резонатора и имеет абсолютно другое строение, в отличие от двухтактного. Они не взаимозаменяемы, и это очень важный момент, например если вы решили поменять глушитель. Этого делать нельзя. Он служит лишь для гашения звука, а также в некоторых современных моделях содержит фильтрующие элементы, для соответствия евростандартам.

Преимущества четырехтактного двигателя на скутере

Преимуществ у четырехтактного двигателя гораздо больше, чем недостатков. И в данном случае сравнивать мы его будем конечно же с двухтактными моторами. Итак, плюсы:

  • экономичность (потребляют значительно меньше топлива);
  • долговечность (срок службы на порядок больше);
  • экологичность (меньше выбросов в атмосферу);
  • стабильность ( как на холостых так и при движении; четырехтактный двигатель работает стабильнее, менее вибрирует и лучше работает в сложных условиях, например зимой),
  • шум при работе двигателя гораздо тише.

Недостатки четырехтактного двигателя на скутере

  • большой вес;
  • высокая стоимость;
  • ниже мощность, по сравнению с двухтактником, но только при наборе скорости;
  • сложность и дороговизна в ремонте.

Дальнейшая перспектива таких двигателей очевидна, это неизбежный переход и отказ от громких и неэкономичных, но в то же время мощных двухтактных скутеров.

Вы также можете ознакомиться с другими статьями на тему:

Выбор винта для лодки

Для оптимального выбора винта нужно учесть поведение лодки во время движения. По этому аспекту можно выделить следующие особенности детали:

  • Тяжелый винт. Если винт слишком тяжел для конструкции лодки, двигатель не будет развивать полные обороты, а при движении необходимо уменьшать шаг.
  • Скоростной. При использовании винта для мотора Тохатсу 9,8 может сложиться ситуация, что лодка будет выходить на максимальные обороты только при небольшой загрузке.
  • Универсальный. Наиболее востребованный вариант – это трехлопастный винт Тохатсу 9,8, с которым можно выйти на максимальные обороты с минимальной нагрузкой на мотор.
  • Грузовой. Тяжелый винт используется для лодок большой вместимости и за счет увеличенного диаметра выходит на максимальные обороты со средней нагрузкой на двигатель.

Подходящим вариантом для лодок любой конструкции является винт для мотора Tohatsu 9.8, который представлен целой серией. Шаг винта Тохатсу 9.8 зависит от модели детали, предложенный производителем ряд достаточно широк для любого режима передвижения.

В нашей компании можно купить скоростной винт для Тохатсу 9.8 или товар такого же формата от другого производителя. Мы предлагаем сертифицированную оригинальную продукцию, поэтому все указанные характеристики оборудования полностью соответствуют заявленным параметрам от завода-изготовителя.

Порядок работы цилиндров двигателя

Для наибольшей равномерности нагрузки коленчатого вала многоцилиндрового двигателя необходимо, чтобы рабочие такты в цилиндрах повторялись в определенной последовательности, которая называется порядком работы цилиндров. Порядок работы цилиндров зависит от числа цилиндров двигателя и его тактности; при этом последовательно работающие цилиндры не должны стоять рядом.

Полный цикл у четырехтактного двигателя осуществляется за два оборота вала, т. е. за 720°, у двухтактного за 360°. Для того чтобы в любой момент вал двигателя имел некоторое постоянное усилие от воздействия газов на поршень, колена вала необходимо смещать относительно друг друга на угол ф. Этот угол зависит от числа цилиндров г и тактности двигателя и равен цикловой продолжительности поворота вала в градусах, отнесенной к числу цилиндров. Следовательно, для четырехтактного двигателя ф = 720°/г, для двухтактного ф = 360°/z.
Определим, например, порядок работы цилиндров, расположенных в один ряд, у четырехтактного четырехцилиндрового двигателя. В этом случае ф = 720° : 4 = = 180°. Вал имеет конфигурацию, при которой поршни 1 и 4 перемещаются в направлении, противоположном движению поршней 2 и 3. Получающееся при этом чередование процессов в цилиндрах показано в табл. 8. Если в первом цилиндре осуществляется рабочий ход, то поршень второго цилиндра движется вверх, при этом из двух возможных процессов (сжатие и выпуск) примем выпуск. Тогда поршень третьего цилиндра, также перемещающийся вверх, должен осуществлять сжатие. В четвертом цилиндре поршень движется вниз одновременно с поршнем первого цилиндра, осуществляющим рабочий ход, поэтому в четвертом цилиндре должен быть впуск. Чередование процессов в последующих тактах всех цилиндров определяется цикловой последовательностью. Из табл. 8 видно, что процессы расширения (рабочего хода) будут проходить в цилиндрах в следующем порядке: 1—3—4—2. Если во втором цилиндре в первом такте принять вместо процесса выпуска сжатие, то порядок работы цилиндров изменится и будет 1—2—4—3. Следовательно, для четырехтактного четырехцилиндрового однорядного двигателя возможны два порядка работы цилиндров.

Для более полного усвоения предлагаю визуально взглянуть на следующие рисунки:

а — чередование тактов 1-2-4-3; б — чередование тактов 1-3-4-2

И напоследок, видео ролик о работе(бензиновый и дизельный):

Итак, начальные сведения мы получили. Теперь мы можем приступать к изучению устройства двигателя внутреннего сгорания.

Ссылка на основную публикацию
Adblock
detector