3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что образуется при сгорании топлива в двигателе

Последствия неполного сгорания топлива

  • 16 октября 2015 13:49:38
  • Отзывов:
  • Просмотров: 12867

По статистике всего около 5% автолюбителей выбирают АЗС ориентируясь на качество топлива. Остальные по доступности, бренду и совету друзей. Качество топлива-это в первую очередь качество его сгорания или горения. Другими словами, только 5% принимают во внимание последствия неполного сгорания. В то время как остальные или не слышали об этом ничего, или доверяют вывескам-ЕВРО5, или надеются на дельный совет друга, или используют присадки для повышения октанового, цетанового числа и депрессорные или антигели.

Все перечисленные способы не оптимизируют процессы сгорания в двигателе и не влияют на его эксплуатационные характеристики. Тяжелые фракции топлива имеют высокую точку кипения. От этой характеристики и зависит насколько будет неполным сгорание.

Причины неполного сгорания:

  • Наличие воды, серы, смолы, парафина, соли органических кислот, механических примесей в топливе.
  • Непрогретый двигатель.
  • Неисправные инжектора.

Какой химический процесс происходит при сгорании топлива.

Сообщение MAX1 » Вт июл 18, 2006 12:20 pm

Re: Какой химический процесс происходит при сгорании топлива

Сообщение barsergey » Вт июл 18, 2006 5:11 pm

Какого топлива?
Насыщенные углеводороды полностью горят так:

CnH2n+2 + (1,5n+0,5)O2 = nCO2 + (n+1)H2O

Неполностью — зависит от недостатка кислорода. Если нехватает чуть-чуть — вместо СО2 образуется СО, если совсем не хватает, то С — сажа.

А вообще, уточните, пожалйста, вопрос. Конкретизируйте.

Сообщение Mendeleev » Ср июл 19, 2006 3:41 am

Когда смешивается пары бензина и воздуха получается сложная смесь: главным образом смесь углеводородов, кислорода и азота, которые взяты в определенной пропорции.
При горении молекулы веществ, участвующих в реакции, распадаются на атомы, после чего из этих атомов образуются молекулы новых веществ. Часть освободившейся при перестройке молекул химической энергии превращается в тепловую энергию.
Между атомами углерода и водорода, входящими в состав молекулы бензина, существуют взаимные связи. Требуется затратить вполне определенное количество энергии, чтобы вырвать атом углерода или водорода из молекулы бензина. Для того чтобы разбить молекулу, необходим внешний тепловой импульс, молекулы смеси вблизи теплового импульса, получив «тепловой толчок», устремляются в стороны от центра начала реакции и с силой ударяются о соседние молекулы, которые под действием этих ударов распадаются на составные части.
Составные части распавшихся молекул кислорода и паров бензина вновь перегруппировываются, образуя молекулы новых веществ: водяных паров и углекислого газа.
Выделившаяся при этом тепловая энергия заставит с огромной скоростью двигаться следующую группу молекул. Каждая группа молекул топлива и кислорода испытывает в зоне горения определенное число столкновений, после чего не выдерживает и распадается, вступая в реакцию. При этом выделяется тепло, и тепловой толчок получает следующая группа молекул, так как при горении выделившаяся тепловая энергия значительно больше энергии, затраченной на разрушение молекул реагирующих веществ.

Поскольку вопрос не конкретизированный, то и ответ- общетеоритический.

Методика расчета выбросов парниковых газов (CO2-эквивалента)

Расчет парниковых газов от энергетической деятельности предприятий (сжигание топлива)

В данном разделе приводится методика расчета выбросов парниковых газов от энергетической деятельности, связанной со сжиганием топлива. При проведении инвентаризации выбросов парниковых газов от сжигания топлива с целью производства энергии (электричества и тепла) и для собственных нужд предприятия оцениваются выбросы газов с прямым парниковым эффектом – двуокиси углерода ( СО 2 ), метана ( СН 4 ) и закиси азота ( N 2 O ).

В процессе сжигания топлива большая часть углерода выбрасывается непосредственно в виде CO 2 . Другие газы ( СН 4 и N 2 O ) также оцениваются. Весь высвободившийся углерод рассматривается в качестве выбросов CO 2 . Неокислившийся углерод, остающийся в виде твердых частиц, сажи или золы, исключается из общих показателей выбросов парниковых газов путем умножения на коэффициент 1 окисления углерода в топливе (который показывает долю сгоревшего углерода).

Выбросы двуокиси углерода

Выбросы двуокиси углерода при стационарном сжигании топлива являются результатом высвобождения углерода из топлива в ходе его сгорания и зависят от содержания углерода в топливе. Содержание углерода в топливе является физико-химической характеристикой, присущей каждому конкретному виду топлива и не зависит от процесса или условий сжигания топлива.

Таблица 1 — Приставки и множители

Исходными данными для расчета выбросов служат данные о деятельности предприятия. Данные о деятельности представляют собой сведения о количестве и виде сожженного за год ископаемого топлива, то есть фактическое потребление топлива за год, по которым предприятия ведут учет.

Для расчетов используются следующие физические единицы измерения массы или объема топлива: для твердого и жидкого топлива — тонны, для газообразного топлива — тысячи кубических метров. Для перевода физических единиц в общие энергетические единицы – джоули (Дж), мегаджоули (МДж), гигаджоули (ГДж) или тераджоули (ТДж) (Таблица 1) — используется низшее теплотворное значение (теплота сгорания, или теплотворное нетто-значение — ТНЗ ) каждой категории топлива.

Оценка выбросов диоксида углерода при сжигания топлива установками

Каждое топливо имеет определенные химико-физические характеристики, которые воздействуют на горение, такие, как значение ТНЗ , и содержание углерода. Содержание углерода в топливе может определяться в лаборатории на предприятии, что позволяет рассчитать собственный коэффициент выбросов двуокиси углерода и получить более точное значение выбросов. Использование собственных коэффициентов выбросов предпочтительнее усредненных коэффициентов, указанных в методике.

Расчет выбросов СО 2 при сжигании топлива разбивается на следующие шаги:

1) фактически потребленное количество каждого вида топлива по каждой установке в натуральных единицах (т, м 3 ) для соответствующего вида продукции умножается на коэффициент его теплосодержания ТНЗ (ТДж/т, м 3 );

2) полученное произведение (расход топлива в энергетических единицах — ТДж) умножается на коэффициент выбросы углерода (т C/ТДж);

3) полученное произведение корректируется на неполное сгорание топлива – умножается на коэффициент окисления углерода (отношение СО 2 : СО);

4) пересчет выбросов углерода в выбросы СО 2 – путем умножения откорректированного углерода на 44/12.

Расчет выбросов СО 2 для каждого вида топлива для отдельных источников (установок для сжигания) производится по формуле:

Е = М х К 1 х ТНЗ х К 2 х 44/12

Е — годовой выброс СО 2 в весовых единицах (тонн/год);

М — фактическое потребление топлива за год (тонн/год);

К 1 — коэффициент окисления углерода в топливе (показывает долю сгоревшего углерода), таблица 2;

ТНЗ — теплотворное нетто-значение (Дж/тонн), таблица 3;

К 2 — коэффициент выбросов углерода (тонн/Дж), таблица 3;

44/12 — коэффициент пересчета углерода в углекислый газ (молекулярные веса соответственно: углерод — 12 г/моль, О 2 = 2 х 16 = 32 г/моль, СО 2 = 44 г/моль).

Определение фактического потребления топлива производится на основании учетных данных предприятия о потреблении различных видов топлива.

При сжигании топлива не весь содержащийся в нем углерод окисляется до СО 2 . Учет неполного сгорания топлива производится с помощью коэффициента окисления углерода К 1 . Средние значения К 1 представлены в таблице 2.

Таблица 2 — Коэффициенты окисления углерода (K 1 )

Вид топливаКоэффициент окисления углерода ( К 1 )
Уголь0,98
Нефть и нефтепродукты0,99
Газ0,995

Для перевода потребленного количества топлива в энергетические единицы его масса умножается на его теплотворное нетто-значение ( ТНЗ ). Для получения эмиссий углерода полученное количество потребленного топлива умножается на коэффициент выбросы углерода. Значения ТНЗ и коэффициентов выбросы углерода для видов топлива приведены в таблице 3.

Таблица 3 — Коэффициенты низших теплотворных нетто-значений (ТНЗ) и коэффициенты выбросов углерода (К 2 ) для видов топлива

Оценка выбросов парниковых газов от сжигания топлива автомобильным транспортом

Автомобильный транспорт производит значительное количество выбросов ПГ, таких, как диоксид углерода (CO 2 ), метан (CH 4 ) и закись азота (N 2 O). По методологии МГЭИК автомобильный транспорт, как один из источников эмиссий ПГ, входит в модуль «Энергетическая деятельность», так как выбросы ПГ от автотранспорта связаны со сжиганием топлива. При оценке выбросов ПГ можно использовать национальные факторы эмиссий или факторы эмиссий ПГ по умолчанию, предложенные в Справочном руководстве МГЭИК.

Расчеты выбросов от транспортных средств основаны на данных об общем потреблении топлива. Удельная теплота сгорания и коэффициенты выбросов для каждого типа топлива были частично рассчитаны с учетом специфики используемого топлива.

Методика расчета выбросов от сжигания топлива от автомобильного транспорта подразделяется на две части: оценка эмиссий двуокиси углерода и оценка эмиссий других газов. Оценка выбросов CO 2 лучше всего рассчитывается на основе количества и типа сгораемого топлива и содержания углерода в нем. Количество окисленного углерода практически не варьирует в зависимости от применяемой технологии сжигания топлива. Оценка выбросов других газов с парниковым эффектом более сложна, так как зависит от типа автомобиля, топлива, характеристик эксплуатации транспортного средства, типа технологии контроля за выхлопными газами.

Оценка выбросов диоксида углерода от сжигания топлива автомобильным транспортом

Расчет выбросов диоксида углерода от сжигания топлива в двигателях внутреннего сгорания рекомендуется проводить на основе учета видов топлива и типов двигателя. Выбросы углекислого газа по этому методу оцениваются следующим образом. Сначала оценивается потребление каждого вида топлива по типам транспорта (легковой, грузовой, автобусы, спецмашины). Затем оцениваются общие выбросы СO 2 путем умножения количества потребленного топлива на фактор выбросы для каждого типа топлива и типа транспорта по формуле:

Е = М х К 1 х ТНЗ х К 2 х 44/12

Е — годовой выброс СО 2 в весовых единицах (тонн/год);

М — фактическое потребление вида топлива за год (тонн/год);

К 1 — коэффициент окисления углерода в топливе (показывает долю сгоревшего углерода), таблица 4;

ТНЗ — теплотворное нетто-значение (Дж/тонн), таблица 4;

К 2 — коэффициент выбросов углерода (тонн С/Дж), таблица 4;

44/12 – коэффициент для пересчета выбросов углерода С в двуокись углерода СО 2 .

Для оценки выбросов диоксида углерода от автотранспортного сектора для используемых видов топлива (бензин, дизельное топливо, сжиженный нефтяной газ, сжатый природный газ) были рассчитаны региональные коэффициенты пересчета сожженного топлива в выбросы СО 2 (теплотворные нетто-значения, коэффициенты выбросы углерода, фракция окисленного углерода). Расчеты коэффициентов для пересчета, представленные в таблице 3.4, были проведены по составу топлива и их физическим характеристикам на основе следующих источников данных: данные ГОСТов различных видов топлива; справочные данные; данные, полученные от некоторых нефтяных и газовых месторождений.

Таблица 4 — Коэффициенты для пересчета сожженного топлива в выбросы СО 2 для автотранспорта

Коэффициенты для расчета выбросов СО 2 при сжигании ископаемого топлива

Выбросы СО 2 от сжигания топлива — не только главная составляющая всех антропогенных выбросов парниковых газов, но и их наиболее точно известная часть. Во всех странах сжигание топлива — предмет строгой статистической отчетности. При этом выбросы СО 2 при сжигании угля, газа, нефтепродуктов и торфа зависят, прежде всего, от количества использованного топлива. Энергетическая эффективность сжигания топлива очень важна для энергетики и транспорта, но на выбросы СО 2 влияет слабо. Главное именно то, сколько топлива было сожжено. Здесь мы не рассматриваем энергетику стран. Однако в качестве справочной информации для заполнения энергетического паспорта и Приложения 7 «Сведения по выбросам СО 2 -эквивалента при использовании энергетических ресурсов за отчетный (базовый) год» полезно привести коэффициенты пересчета — данные о том, сколько СО 2 поступает в атмосферу при сжигании тонны того или иного топлива.

Таблица 5 — Коэффициенты для расчета выбросов СО 2 при сжигании ископаемого топлива

1,5 т СО 2 /т, одна тонна торфа дает в

Источник: Национальный доклад РФ о кадастре антропогенных выбросов из источников и абсорбции поглотителями парниковых газов, не регулируемых Монреальским протоколом за 1990– 2010 гг. М., 2012.

Основы теплотехники

Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха.
Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:

  • при сгорании выделяют достаточно большое количество теплоты;
  • не дают продуктов сгорания, губительно действующих на окружающий растительный и животный мир;
  • встречаются в больших количествах в природе или легко получаются при переработке других веществ;
  • легко добываются и транспортируются на большие расстояния;
  • быстро воспламеняются.

Топливо, добываемое из недр земли в готовом виде, называют естественным , а получаемое путем переработки горючих веществ и природного топлива – искусственным . Как естественное, так и искусственное топливо подразделяют на твердое, жидкое и газообразное.

В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь.
К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.

По назначению топливо подразделяют на энергетическое и технологическое .
К энергетическим относят все низкосортные топлива, которые можно сжигать на электростанциях, в производственно-бытовых и других тепловых установках в натуральном виде или после переработки. Это антрацит, бурые угли, торф, природный газ, а также продукты переработки других топлив.
К технологическому топливу относят высокосортное топливо и коксующиеся угли.

По методу добычи и потребления различают местное и привозное топливо.

Составные части топлива

Топливо состоит из органической и минеральной частей.
Органическую часть топлива составляют следующие химические элементы: углерод ), водород 2), кислород 2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части.
Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.

Наиболее ценные из перечисленных элементов топлива – углерод и водород.
Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.

Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность.
Минеральные составляющие после сжигания образуют твердый остаток – золу.

Сущность процесса горения

Горение есть окисление горючих элементов топлива кислородом, сопровождающееся выделением теплоты.
В зависимости от скорости распространения пламени различают нормальное горение и горение со взрывом . При нормальном горении скорость распространения пламени равна 15-25 м/с, а при взрывном горении – 2000-3000 м/с. Чтобы топливо начало гореть, его необходимо нагреть до определенной температуры, называемой температурой воспламенения .
Так, например, каменный уголь воспламеняется при температуре 225-375 ˚С, сухой торф – 225-300 ˚С, дрова – 350-450 ˚С, керосин – 380 ˚С, бензин – 415 ˚С, метан (СН4) – 650-700 ˚С и т. д.

При нагревании топлива до температуры воспламенения начинается распад горючей массы на составные элементы, которые затем окисляются кислородом и выделяют теплоту. Эта теплота способствует нагреву массы близлежащего топлива, в которых начинают протекать аналогичные процессы (распад и окисление) , и, таким образом, вся масса топлива, находящегося в топке, начинает гореть.
Для того, чтобы процесс горения не прекратился, выделяющаяся теплота должна поддерживать температуру топлива не ниже температуры воспламенения.

Горение может быть полным и неполным.
Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем.
Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.

Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения.
На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.

Количество воздуха, необходимое для полного сгорания топлива

Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода.
Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода.
Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.

При определении количества воздуха, необходимого для полного горения, следует учитывать, что в топливе тоже содержится некоторое количество кислорода, а также то, что массовая доля кислорода в воздухе — 23,2 %. В общем случае формула для определения массового количества воздуха для полного сгорания топлива имеет вид:

где: Ср , Нр , Sр , Ор – соответственно массовое содержание углерода, водорода, серы и кислорода в топливе.

При сгорании топлива часть кислорода воздуха не успевает вступить в реакцию окисления, поэтому для обеспечения полного сгорания топлива следует к нему подводить воздух с некоторым избытком по сравнению с теоретически необходимым количеством. Отношение действительного количества воздуха к теоретически необходимому количеству называют коэффициентом избытка воздуха . На практике этот коэффициент (в зависимости от вида топлива) может принимать значения от 1,05 (газообразное и пылевидное топливо) до 1,8 (твердое топливо) .

Теплота сгорания топлива

Важнейшая характеристика топлива – теплота его сгорания – количество теплоты, выделившейся при полном сгорании единицы количества топлива (для жидких и твердых топлив – кг, для газообразных – м 3 ) . Различают высшую и низшую теплоту сгорания.
Высшей теплотой сгорания Qв называют теплоту, выделяемую при полном сгорании единицы количества топлива, в результате которого образующаяся влага конденсируется и выделяется в виде жидкости из продуктов сгорания.
Если в результате сгорания единицы количества топлива образуемая влага остается в продуктах сгорания в парообразном состоянии, то выделяемую при этом теплоту называют низшей теплотой сгорания Qн . Эта величина меньше высшей теплоты сгорания топлива на теплоту парообразования (конденсации) влаги, образуемой при сжигании единицы количества топлива.

Теплоту сгорания топлива, кДж/кг , можно определить опытным путем (при сжигании порции топлива в специальном приборе – калориметре) или расчетом (по формулам Менделеева) , если известен элементарный состав топлива.

Например, для твердого топлива:

Qв = 339С + 1250Н – 108,85(О – S) ;

для жидкого топлива:

где: С , Н , О , S и W – соответственно процентное содержание углерода, водорода, кислорода, серы и влаги в рабочем топливе.

Условное топливо

При расчете расхода топлива, а также топливных ресурсов пользуются понятием условное топливо .
Это реальное топливо, теплота сгорания которого равна 29,3 МДж/кг.
Для перевода любого топлива в условное, пользуются тепловым эквивалентом, который получается от деления теплоты Qрц сгорания данного топлива на теплоту сгорания условного топлива, т. е. на 29300 кДж/кг или 29,3 МДж/кг.
Так, например, для торфа Эт = 8500/29300 = 0,29, т. е. 1 тонна торфа по своей тепловой ценности равноценна 0,29 тонны условного топлива.

Температура горения топлива

Следует различать теоретическую и действительную температуру горения.
Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность.
Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.

Действительная температура горения (при коэффициенте избытка воздуха равном 1,0) : антрацита — 2270 ˚С, торфа – 1700 ˚С, мазута – 1125 ˚С, природного газа – 2000 ˚С.

Способы сжигания топлива

В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.

Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива.
При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.

Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.

Факельный способ сжигания топлива (рис. 1б) , в отличие от слоевого, заключается в том, что частицы топлива движутся вместе с газовоздушным потоком в топочном пространстве. Поэтому масса частиц должна быть как можно меньше, и они должны удерживаться в газовоздушном потоке.
Этим обеспечивается очень тщательное перемешивание частичек топлива с воздухом, интенсивное их горение, получается более однородный, устойчивый факел горения и происходит наиболее полное выгорание горючих элементов, составляющих горючую массу топлива. Поэтому при факельном способе применяют твердое топливо в виде очень мелких частичек (пыли) , размеры которых составляют доли миллиметра.

Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.

Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы.
Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Особенности бензиновых и дизельных масел

Еще в начале 2000-х вопрос в выборе масла для бензинового или дизельного двигателя стоял остро. Международные комитеты, которые отвечали за сертификацию масел, специально разделяли масла для разных типов двигателей.

В бензиновых моторах температура сгорания топлива выше, а давление воздуха в камере сгорания – ниже. За счет этого воздушно-топливная смесь выгорает практически полностью и довольно быстро. Поэтому и масло для бензиновых агрегатов может содержать меньшее количество моющих присадок.

Дизельное топливо является более грязным – концентрация серы в нем выше, чем в бензиновом топливе примерно в 2 раза. При этом температура сгорания топлива более низкая, а компрессия – высокая. Из-за этого при работе двигателя образуется больше золы и нагара, а в картер просачивается больше выхлопных газов, окисляющих масло.

Поэтому масла, предназначенные для использования в дизельных ДВС, содержат в разы больше присадок, защищающих узлы двигателя от загрязнения и износа. Да и само моторное масло имеет усиленную защиту от окисления.

Разведка и добыча

  • Устав и внутренние документы
  • Отчетность, Презентации и Годовые отчеты
  • Раскрытие информации
  • Календарь инвестора
  • Роснефть: вклад в реализацию целей ООН в области устойчивого развития
  • ESG
  • Инсайдерам
  • Акционерный капитал
  • Дивиденды
  • Информация для акционеров
  • Инструменты инвестора
  • Контактная информация
  • Осторожно мошенники

  • Пресс-релизы
  • Новости
  • Новости дочерних обществ
  • «Роснефть» сегодня
  • Корпоративные СМИ
  • Видеоматериалы
  • Фотогалерея
  • Контактная информация

  • Поддержка международных инициатив в области устойчивого развития
  • Взаимодействие с заинтересованными сторонами
  • Отчеты в области устойчивого развития
  • Подходы к соблюдению прав человека
  • Противодействие коррупции
  • Горячая линия безопасности
  • Промышленная безопасность, охрана труда и окружающей среды
  • Наука и инновации
  • Корпоративный научно-проектный комплекс
  • Персонал
  • Корпоративная культура
  • Социальная политика
  • Система корпоративной сертификации

  • Пресс-релизы
  • Новости
  • Новости дочерних обществ
  • «Роснефть» сегодня
  • Корпоративные СМИ
  • Видеоматериалы
  • Фотогалерея
  • Контактная информация

« Август, 2021

ПнВтСрЧтПтСбВс
1
2345678
9101112131415
16171819202122
23242526272829
3031
  • Январь
  • Февраль
  • Март
  • Апрель
  • Май
  • Июнь
  • Июль
  • Август
  • Сентябрь
  • Октябрь
  • Ноябрь
  • Декабрь

Ход урока

Учитель: Сообщение темы урока и целей урока.

I. Устный опрос:

  • Какие виды энергии вы знаете?
  • Что называется внутренней энергией?
  • Какими способами можно изменить внутреннюю энергию?
  • Как можно рассчитать изменение внутренней энергии при теплопередаче?

II. Объяснение новой темы (беседа с учащимися)

Учитель: Внутреннюю энергию частично можно использовать не только в процессе теплопередачи, но и в процессе горения топлива. Что такое топливо?

Учащиеся: Вещество, которое способно гореть и выделять при горении тепло.

Учитель: История развития человечества теснейшим образом связана с получением и использованием энергии. Уже в древнем мире люди использовали тепловую энергию для обогрева жилища, для приготовления еды, при изготовлении из меди, бронзы, железа и других металлов предметов быта, инструментов. Эту энергию получали при сжигании топлива.

Учитель: Какие виды топлива вы знаете?

Учащиеся: Торф, уголь, бензин, дрова и т. д.

Учитель: С древнейших времен были известны древесина и торф, дающие при сжигании большое количество теплоты. Сейчас формулировка «топливо» включает все вещества, которые дают при сжигании большое количество теплоты, широко распространенные в природе или добываемые промышленным способом. К топливу относятся нефть и нефтепродукты (керосин, бензин, мазут, дизельное топливо), уголь, природный горючий газ, растительные отходы (солома, лузга и т.п.), горючие сланцы, а в настоящее время и вещества, используемые в ядерных реакторах на АЭС и ракетных двигателях.

Классификацию топлива можно провести по его агрегатному состоянию и по его происхождению. По агрегатному состоянию топливо может быть и твердым (уголь, торф, древесина, сланцы), и жидким (нефть и нефтепродукты), и газообразным (природный газ). По происхождению топливо делится на природное (древесина, солома, торф, бурый и каменный уголь, антрацит, горючие сланцы, нефть, природный газ) и искусственное (кокс, торфяные брикеты, моторные топлива и др). Рассмотрим различные виды топлива из коллекции.

Давайте попытаемся выяснить, почему в результате сгорания топлива выделяется энергия? Для этого нужно вспомнить строение вещества. Из чего состоит вещество?

Учащиеся: Все вещества состоят из молекул, которые состоят из атомов, между которыми есть промежутки.

Учитель: Почему не распадаются вещества на отдельные атомы, несмотря на то, что есть промежутки?

Учащиеся: Чтобы молекулы разделить на атомы, нужно преодолеть силы притяжения то есть, совершить работу, а значит увеличить энергию атомов.

Учитель: При соединении атомов наоборот: энергия будет выделяться. При горении происходит образование из атомов молекул. Обычное топливо содержит углерод. Вы знаете, что без доступа кислорода, воздуха, горение не возможно. При горении атомы углерода соединяются с атомами кислорода, которые содержатся в воздухе.

На доске учитель показывает модели атомов углерода, кислорода и образовавшуюся молекулу углекислого газа.

Учитель: Каждый атом углерода соединяется с двумя атомами кислорода, при этом образуется молекула углекислого газа и выделяется энергия в виде тепла. Важно уметь рассчитывать энергию, которая выделяется при сгорании. Как определить, какое количество теплоты выделяется при сгорании топлива? Опытным путем находят, какое количество теплоты выделится при полном сгорании одинакового количества топлива различных видов.

III. Проделаем опыт:

Положим на картон кусочки фольги, на них два одинаковых комочка ваты с булавочную головку. На один кусочек ваты капнем спирт, а на другой бензин и зажжем их одновременно. Когда спирт и бензин сгорят, полностью прикоснитесь к кусочкам фольги.

Учитель: Одинаково ли нагрелись кусочки фольги?

Учащиеся: Кусочек фольги, где сгорел бензин, нагрелся сильнее.

Учитель: Какое топливо спирт или бензин, выделило больше тепла при полном сгорании?

Учащиеся: Бензин выделил больше тепла, чем спирт.

Учитель: Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называют удельной теплотой сгорания топлива, и обозначают q. Единица измерения удельной теплотой сгорания топлива 1 Дж/кг.

IV. Рассмотрим таблицу «Удельная теплота сгорания некоторых видов топлива»

Учитель: Из таблицы видно, что удельная теплота сгорания торфа 1,4·107 Дж/кг. Это значит, что при полном сгорании торфа массой 1 кг выделится 1,4·107 Дж теплоты.

Учитель: В таблице напротив слова нефть стоит 4,4·107 Дж/кг. Что это означает?

Учащиеся: При полном сгорании нефти массой 1 кг выделится 4,4·107 Дж теплоты.

Учитель: А если сжечь 2 кг нефти?

Учащиеся: Тогда полном сгорании нефти массой 2 кг выделится теплоты в два раза больше, то есть 4,4·107 Дж.

Учитель: Чтобы подсчитать количество теплоты Q, выделяющееся при сгорании топлива любой массы m, нужно удельную теплоту сгорания топлива q умножить на массу сгоревшего топлива: Q=q·m

V. Решение задач (работа у доски)

  1. Сколько теплоты выделится при полном сгорании 0,5 литров керосина.
  2. Сколько воды можно нагреть от 20 градусов Цельсия до кипения, если бы все тепло, выделенное при сгорании 840 грамм каменного угля, пошло на нагрев воды?

VI. Подведение итогов. Рефлексия.

Учитель: Итак, ребята, скажите, пожалуйста, о чем вы сегодня узнали на уроке.

  • Какие виды топлива, основанные на горении, являются наиболее распространенными? (Уголь, нефть, дрова, мазут, керосин)
  • Что является основным компонентом этих видов топлива? (Углерод)
  • Как объяснить с точки зрения строения вещества выделение энергии при горении? (Атомы углерода соединяются с молекулами кислорода, при этом выделяется энергия и образуется углекислый газ)
  • Как можно рассчитать энергию, выделяющуюся при горении топлива? (Q = q·m, q— удельная теплота сгорания, m— масса топлива)
  • Что показывает удельная теплота сгорания топлива? (Звучит определение удельной теплоты сгорания топлива.)

Где искать причину?

  1. Детонация на всех режимах («виноват» скорее всего некачественный бензин или нарушение угла зажигания). Если мотор «ест» масло, то детонация может происходить и из-за этого.
  2. Детонирует на холостых оборотах. Проявляется, если двигатель был под нагрузкой, а затем обороты были сброшены. Детонация из-за смены режима может усиливаться неправильным зажиганием, сильной закоксовкой мотора, неправильным смесеобразованием.
  3. Детонирует после выключения зажигания (в этом случае детонация переросла уже в калильное зажигание. Причина кроется в изменении любых условий – зажигания, степени сжатия, топливе).

При появлении детонации в первую очередь обращаем внимание на качество бензина. Благодаря смене топлива от проблемы избавляемся. Далее уже проверять остальные условия – выставить зажигание, проверить работу топливной системы и т. д.

Если появляется калильное зажигание, то в этом случае помогает раскоксовка мотора.

голоса
Рейтинг статьи
Читать еще:  Эндоскопия двигателей что покажет
Ссылка на основную публикацию
Adblock
detector