2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель не развивает мощность причины

Высокое напряжение

Перспективный привод Porsche Taycan является продолжением новаторских традиций Цуффенхаузена. Работа электродвигателей в деталях: как это выглядит.

Откиньтесь на спинку сидения. У того, кто до упора жмет на педаль газа в Porsche Taycan Turbo S, есть 12 000 причин усесться поплотнее. У водителя и пассажиров перехватывает дыхание, когда их буквально вдавливает в сидения этой топовой модели электрического спорткара при одновременном задействовании всех 12 000 ньютон-метров крутящего момента на всех четырех колесах (Taycan Turbo S: Потребление электроэнергии смешанный цикл: 28,5 кВт·ч/100 км; выброс CO2 смешанный цикл: 0 г/км (по состоянию на 03/2021) ). Вся мощь без промедления вырывается на волю, и сила тяги обоих электродвигателей передней и задней оси практически не меняется до достижения максимальной скорости. Эта доза адреналина является активным компонентом технологии двигателя Porsche. Не случайно авторитетный Центр управления автомобильным транспортом (CAM) назвал Taycan самой инновационной моделью 2020 года в мире. Инновации в Porsche всегда означают доведение технологий до совершенства. В данном случае это не что иное, как использование потенциала электропривода таким образом, как это до сих пор никому не удавалось.

Силовой агрегат:

Эта концепция Porsche возникла не вчера. И даже не позавчера, а более 120 лет тому назад. В то время молодой Фердинанд Порше разрабатывал свои первые электромобили с управляемыми мотор-колесами — мировая новинка. Возможности электромобильности стимулировали спортивные амбиции. Его гоночный автомобиль с четырьмя электрическими мотор-колесами, стал первым полноприводным легковым автомобилем в мире.

Простые электродвигатели постоянного тока того времени давно заменены современными. Однако основной физический принцип остался прежним: магнетизм. У магнита всегда есть северный и южный полюса. Разные притягиваются, одинаковые отталкиваются. С одной стороны, существуют постоянные магниты, которые основываются на действии элементарных частиц. С другой стороны, магнитные поля также возникают при каждом движении электрического заряда. Для усиления электромагнетизма в электрическом двигателе размещают намотанный в катушку проводник под током. Электромагниты — в зависимости от конструкции двигателя также постоянные магниты — размещены на двух компонентах. Неподвижная часть называется статор, вращающаяся — ротор. В результате периодического включения и выключения электрического напряжения возникает сила притяжения и отталкивания, создающая вращение ротора.

Центральный элемент:

Больше меди в статоре благодаря технологии «шпильки для волос»

Статор окружен очень стабильной рубашкой охлаждения. Температура постоянно отслеживается и регулируется.

Медный провод, намотанный на катушки, производит магнитные поля при прохождении через него тока.

Отдельные провода в форме шпилек для волос последовательно спаяны лазером на концах в катушки и изолированы.

Не каждый тип электромотора подходит для привода автомобиля. Porsche делает ставку на синхронный двигатель с возбуждением от постоянных магнитов (PSM). В отличие от преимущественно используемой конструкции менее затратного асинхронного двигателя у PSM бóльшая эксплуатационная мощность вследствие менее быстрого перегрева и, следовательно, отсутствия необходимости уменьшения мощности. PSM от Porsche обеспечиваются и управляются силовыми электронными устройствами с трехфазным переменным напряжением. Частота колебания напряжения через нулевую точку от плюса к минусу определяет число оборотов двигателя. Импульсный инвертор задает двигателям Taycan частоту вращающегося магнитного поля в статоре и, таким образом, регулирует число оборотов ротора. Высококачественные постоянные магниты ротора со сплавами из неодима, железа и бора намагничиваются на длительное время с помощью сильного направленного магнитного поля. Магниты обеспечивают очень сильный возврат энергии через рекуперацию при торможении. В режиме принудительного холостого хода электромотор переходит в режим генератора и дает возможность магнитам индуцировать напряжение и ток в обмотку статора. Мощность рекуперации электродвигателя Porsche самая высокая среди конкурентов.

Компактность:

Синхронные двигатели с возбуждением от постоянных магнитов для длительной мощности

Силовые электронные устройства находятся непосредственно на приводе. Так быстро, эффективно и с экономией веса достигается соединение двигателя и датчиков.

Планетарная передача переднего привода оснащена ступенью передачи в соотношении 1:8. Таким образом, крутящий момент колеса достигает 3 000 ньютон-метров.

Статор электродвигателя с возбуждением от постоянных магнитов состоит из активных электромагнитов, крутящегося ротора, пассивных постоянных магнитов. Это оптимальный принцип для коробки передач спорткара.

Технология, доведенная до совершенства: этот ген Porsche проявляется в особенности двигателей Taycan, так называемой обмотке Hairpin. Катушки статора в нем состоят не из круглой, а из прямоугольной проволоки. В отличие от классических способов обмотки, в которых медный провод покрывает катушку из бесконечного барабана, технология Hairpin является так называемым формовальным способом монтажа. Это означает, что прямоугольный медный провод делится на отдельные отрезки и сгибается латинской буквой «u», напоминая шпильку для волос (англ. Hairpin). Эти отдельные скобы вставляются в стальные листы статора, где размещена обмотка, так, что поверхности прямоугольного профиля провода лежат друг на друге. В этом состоит главное преимущество технологии Hairpin. Она дает возможность запаковать провод плотнее и поместить больше меди в статор. Если обычные способы обмотки имеют около 50 % так называемого коэффициента заполнения медью, то в технологии Porsche он составляет почти 70 %. Так увеличивается мощность и крутящий момент при одинаковом монтажном пространстве. Концы проволочных скоб запаиваются лазером: возникает катушка. Следующим важным преимуществом является улучшение теплопередачи через однородный контакт соседних проводов, а статор Hairpin может охлаждаться существенно эффективнее. Хотя более чем 90 % даваемой электродвигателями энергии идет на поступательное движение, как и в двигателе внутреннего сгорания, потери энергии превращаются в тепло, которое необходимо отвести. Для этого двигатели оснащены рубашкой охлаждения.

Инерционная масса:

Для точной настройки синхронного двигателя с возбуждением от постоянных магнитов силовые электронные устройства должны знать точное положение угла ротора. Для этого служит решающее устройство. Оно состоит из металлического роторного диска, который проводит магнитное поле, обмотки возбуждения, а также двух приемных катушек. Катушка обмотки возбуждения производит магнитное поле, которое передается на приемные обмотки через датчик вращения. Таким образом, в приемных катушках индуцируется напряжение, чье положение по фазе смещено пропорционально положению ротора. Из этой информации система управления может точно рассчитать угловое положение ротора. В этой системе управления, т. н. импульсном инверторе, сконцентрировано всё ноу-хау Porsche. Инвертор отвечает за преобразование постоянного тока батареи с напряжением 800 вольт в переменный ток и его подачу на оба электродвигателя. Porsche был первым производителем, который реализовал уровень напряжения 800 вольт. Когда-то это была разработка для гоночного Porsche 919 Hybrid. Сегодня, в серийном производстве, это решение уменьшает вес и монтажное пространство благодаря гибкому кабелю и дает возможность более быстрой зарядки.

Читать еще:  Что такое давления в топливной системе бензинового двигателя

Сеть Taycan

Задний привод с двухступенчатой коробкой передач

Передний привод и вспомогательные агрегаты

Связка проводов для привода передней оси находится над аккумулятором большой мощности

Электродвигатели достигают 16 000 оборотов в минуту. Для оптимального использования такого интервала частоты вращения в типичном для Porsche диапазоне регулирования динамики, эффективности и максимальной скорости передние и задние блоки привода оснащены отдельными коробками передач. Taycan вообще является первым среди электрических спорткаров, у которого на задней оси коробка с двумя переключаемыми передачами, первая из них очень понижена. Одноступенчатая планетарная передача на передней оси посылает силу на колеса.

С помощью такой комбинации Taycan Turbo S развивает свою потрясающую мощность. Ступень передачи на передней оси преобразовывает 440 ньютон-метров электродвигателя в почти 3 000 ньютон-метров на колесах. 610 ньютон-метров электродвигателя заднего моста увеличиваются на первой передаче до 9 000 ньютон-метров тяги. Задачей дольше переключаемой второй передачи является обеспечение эффективности и резерва мощности на высокой скорости.

Высокие технологии будущего в мельчайших деталях — так Porsche продолжает свои традиции новаторства в эпоху электрического привода.

Асинхронный двигатель

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

Буквально перед этими выходными у меня вышел из строя асинхронный двигатель АОЛ 22-4 мощностью 400 (Вт), установленный в приводе переключения ступеней РПН силового трансформатора.

Причиной его выхода из строя стало межвитковое замыкание обмотки. Такая ситуация случается крайне редко, но все таки иногда случается. Условия эксплуатации дают о себе знать — повышенное содержание угольной пыли. Может дело даже не в условиях эксплуатации, а в поставляемом некачественном проводе для ремонта двигателя.

Опять задел тему некачественного производства кабельной и проводниковой продукции, поэтому напомню Вам еще раз как правильно купить кабель или провод в магазине, а также как самостоятельно определить сечение провода по его диаметру.

Ну, раз мне предстояло разбирать сгоревший электродвигатель, то я решил заодно написать статью об асинхронном двигателе (АД), его применении и устройстве.

Применение и назначение АД

В последнее время асинхронные двигатели очень широко применяются, как в промышленности в виде электрических приводов дымососов, шаровых мельниц, транспортеров, насосов, дробилок, сверлильных и наждачных станков, так и в быту. Перечислить все области применения просто невозможно.

Да потому что они имеют ряд достоинств по сравнению с другими электрическими машинами, например, обладают высокой надежностью, простотой обслуживания и не менее важное, они могут работать непосредственно от сети переменного напряжения.

Устройство асинхронного двигателя (АД)

А теперь перейдем к устройству асинхронного двигателя на примере АОЛ 22-4 мощностью 400 (Вт).

Я уже говорил чуть выше, что асинхронный двигатель АОЛ 22-4 устанавливается в приводе переключающего устройства РПН силового трансформатора (17 ступеней). Вот так выглядит сам привод.

Питание двигателя осуществляется от сети с изолированной нейтралью с линейным напряжением 220 (В).

Кстати, этот двигатель специально был переделан под наши нужды.

Поэтому на его бирке Вы увидите обозначение, вместо 220/380 (В), 220/ 380 (В) (зачеркнуто на бирке 380 и треугольник), т.е. его обмотки перемотаны на напряжение 127 (В).

Поэтому при линейном напряжении 220 (В) обмотки статора мы соединяем в звезду. Хотя в принципе мы и не собираем. Я попросил у мастера обмоточного отделения после ремонта собирать звезду внутри двигателя и выводить на колодку (клемму) всего 3 вывода, вместо 6.

Асинхронный двигатель (АД) состоит из двух частей, разделенных между собою воздушным зазором. Первая часть – это неподвижный статор, а вторая часть – это подвижный или вращающийся ротор.

Что статор, что ротор состоят из сердечника и обмотки. Но обмотка статора является первичной обмоткой, т.е. включается в сеть, а обмотка ротора является вторичной. Более подробно об этом Вы сможете прочитать в статье про принцип действия асинхронного электродвигателя.

Конструктивно они делятся на 2 разновидности:

  • АД с короткозамкнутым ротором
  • АД с фазным ротором

Мой сгоревший двигатель марки АОЛ 22-4, как Вы уже догадались, относится именно к асинхронному двигателю с короткозамкнутым ротором.

Асинхронный двигатель с короткозамкнутым ротором

Статор у такого двигателя состоит из:

  • корпуса со станиной
  • сердечника
  • трехфазной обмотки

Сам корпус чаще всего изготавливают, либо из алюминиевого сплава, либо из чугуна. В моем примере АОЛ 22-4 имеет алюминиевый корпус с алюминиевой станиной.

Сердечник статора выполняется шихтованным, т.е. набирается из тонких листов электротехнической стали, покрытыми изоляционным лаком. Толщина этих листов составляет примерно от 0,35 до 0,5 (мм). Так сделано с целью уменьшения вихревых токов, появляющихся во время перемагничивания «железа» сердечника под действием вращающегося магнитного поля.

С внутренней стороны сердечника статора асинхронного двигателя находятся продольные пазы, в которые укладывается обмотка.

Обмотка может быть, как однослойная, так и многослойная.

Часть обмотки, которая расположена в пазах, называется пазовой.

Пазовые части обмоток за пределами сердечника (с торца) соединяются с лобовыми частями обмоток.

Это все, что касается статора. Теперь перейдем к тому, как устроен ротор. Как я уже говорил выше, ротор – это вращающаяся часть асинхронного двигателя. Состоит он из вала и сердечника с короткозамкнутой обмоткой.

Кстати, короткозамкнутую обмотку асинхронного двигателя еще называют «беличьем колесом».

Обмотка короткозамкнутого ротора состоит из ряда алюминиевых или медных (реже) стержней, которые расположены в пазах сердечника ротора. Эти стержни с двух сторон замыкаются короткозамыкающими кольцами.

Сердечник ротора, как и сердечник статора, имеет шихтованную конструкцию, но листы из электротехнической стали у него покрыты не лаком, а тонкой пленкой окисла. Этого вполне достаточно для ограничения вихревых токов малой величины из-за не частого перемагничивания сердечника.

В большинстве случаях короткозамкнутую обмотку ротора АД выполняют с помощью заливки собранного сердечника расплавленным алюминиевым сплавом. При этом одновременно отливаются и короткозамыкающие кольца и вентиляционные лопатки.

Вал короткозамкнутого ротора вращается на двух подшипниках качения (их видно на рисунке выше), которые расположены в подшипниковых щитах.

Несколько слов расскажу Вам об охлаждении асинхронного двигателя.

Охлаждение асинхронных двигателей мощностью до 15 (кВт) происходит методом обдува наружной поверхности двигателя с помощью центробежного вентилятора. Сам вентилятор прикрыт защитным кожухом с отверстиями для забора воздуха.

Фото другого типа двигателя.

Охлаждение асинхронных двигателей мощностью более 15 (кВт), помимо вышеописанного способа, выполняется с внутренней вентиляцией. В подшипниковых щитах есть специальные отверстия, их называют «жалюзи», через которые воздух с помощью вентилятора проходит сквозь внутреннюю полость двигателя. В таком случае воздух пронизывает нагретые части обмоток и сердечника, что приводит к более эффективному охлаждению.

Читать еще:  Что такое фрезеровка двигателя

Также асинхронные двигатели для увеличения площади охлаждения могут иметь поверхность из продольных ребер.

Для защиты людей от поражения электрическим током асинхронный двигатель необходимо заземлять. Для этого имеются специальные болты (винты) для заземления. Обычно один болт (винт) находится на корпусе двигателя.

А другой в клеммной колодке.

АД с короткозамкнутым ротором имеет один существенный недостаток в виде ограниченного пускового момента из-за короткозамкнутых стержней, что нельзя сказать об АД с фазным ротором.

Асинхронный двигатель с фазным ротором

Конструкция статора асинхронного двигателя с фазным ротором аналогична конструкции статора асинхронного двигателя с короткозамкнутым ротором.

А вот по конструктивному исполнению ротора есть большая разница.

Ротор такого двигателя имеет усложненную конструкцию. На его валу закреплен шихтованный сердечник с трехфазной обмоткой. Начала обмоток соединяют звездой, а их концы соединяют к контактным кольцам. Эти кольца тоже расположены на валу ротора и изолированы от вала и между собой.

Для осуществления контакта с обмоткой вращающегося ротора на каждое кольцо предусмотрено две металлографитовые щетки. Щетка находится в щеткодержателе, который снабжен пружинами для обеспечения необходимой силы прижатия щетки к контактному кольцу.

Таким образом, трехфазная обмотка ротора соединяется с внешним пусковым реостатом, создающим в цепи ротора добавочное сопротивление.

Зачем это нужно, Вы узнаете из следующих статей раздела «Электродвигатели». Подписывайтесь на получение уведомлений о выходе новых статей на сайте. Форма подписки находится в правой колонке сайта и внизу статьи.

Несколько слов о бирке

На корпусе каждого двигателя установлена пластина со следующими техническими данными:

  • тип двигателя (например, АОЛ 22-4 или АИР71А4)
  • наименование страны и завода-изготовителя
  • год выпуска
  • номинальная полезная мощность на валу
  • номинальный напряжение (ток)
  • схема соединения обмоток (Y/∆)
  • коэффициент мощности
  • номинальная частота вращения (об/мин)
  • кпд
  • режим работы (например, S1)

Асинхронный двигатель. Что лучше?

Если сравнить асинхронный двигатель с короткозамкнутым ротором и с фазным ротором, то можно сделать следующий вывод.

Электродвигатель с фазным ротором имеет более сложную конструкцию, требует больше времени на обслуживание и менее надежен по сравнению с электродвигателем с короткозамкнутым ротором. Но самое главное его достоинство – это лучшие пусковые и регулировочные свойства.

В следующих статьях читайте про: (список будет пополняться по мере написания статей)

Основные неисправности электродвигателя

  • Основные неисправности электродвигателя
  • Причины неисправности электродвигателя
  • Типичные неполадки в работе электродвигателя
  • Устранение неисправностей электродвигателя

С каждым годом бензиновые двигатели все больше и больше вытесняются электромоторами, устанавливаемыми на новом типе машин, именуемом электромобилями. Однако, как и двигатели внутреннего сгорания, электрические силовые агрегаты могут ломаться, вызывая проблемы в функционировании транспортного средства. Основная масса неисправностей электродвигателя возникает вследствие сильного износа деталей механизма и старения материалов, что подкрепляется неправильной эксплуатацией такого автомобиля. Причин появления характерных неполадок может быть множество, и о некоторых (наиболее распространенных) мы Вам сейчас расскажем.

  • Причины неисправности электродвигателя
  • Типичные неполадки в работе электродвигателя
  • Устранение неисправностей электродвигателя

Причины неисправности электродвигателя

Все возможные неисправности двигателя электромобиля можно разделить на механические и электрические. К причинам механических неполадок относят перекосы корпуса электромотора и его отдельных деталей, ослабление креплений и повреждения поверхности составляющих элементов или их формы. Кроме того, частой проблемой является перегрев подшипников, вытекание из них масла и появление ненормального рабочего шума. К наиболее типичным неисправностям электрической части приписывают короткие замыкания внутри обмоток электромотора, а также между ними, замыкания обмоток на корпус и обрывы в обмотках или во внешней цепи, то есть в питающих проводах и пусковой аппаратуре.

Типичные неполадки в работе электродвигателя

Давайте рассмотрим поломки электродвигателей более детально, определив их возможные причины.

Электродвигатель переменного тока

Проблема: при подключении к сети питания электромотор не развивает номинальной частоты вращения и издает неприродные звуки, а при прокручивании вала рукой наблюдается неравномерность в работе. Причиной такого поведения, скорее всего, является обрыв двух фаз при соединении обмоток статора треугольником, или обрыв при соединении звездой.

Если ротор двигателя не вращается, издает сильный гул и нагревается выше допустимого уровня, с уверенностью можно утверждать, что виной тому обрыв фазы статора. Когда двигатель гудит (особенно при попытке запуска), а ротор хоть медленно, но вращается, зачастую причиной появления проблемы является обрыв в фазе ротора.

Бывает, что при номинальной нагрузке на валу электродвигатель устойчиво работает, но частота его вращения несколько меньше номинальной, а ток в одной из фаз статора увеличен. Как правило, это является следствием обрыва в фазе при соединении обмоток треугольником.

Если на холостом ходу электродвигателя присутствуют местные перегревы активной стали статора, то это значит, что из-за порчи межлистовой изоляции или выгорания зубцов вследствие повреждения обмотки листы сердечника статора замкнулись между собой.

При перегреве обмотки статора в отельных местах, когда двигатель не может развить номинального момента и сильно гудит, причину такого явления следует искать в витковом замыкании одной фазы обмотки статора или межфазном замыкании в обмотках.

Если весь электродвигатель перегревается равномерно, то неисправен вентилятор системы вентиляции, а перегрев подшипников скольжения с кольцевой смазкой обусловлен односторонним притяжением роторов (из-за чрезмерной выработки вкладыша) или плохим прилеганием вала к вкладышу. Когда перегревается подшипник качения, издавая при этом ненормальный шум, вполне вероятно, что причина этого кроется в загрязнении смазки, чрезмерном износе тел качения и дорожек или в неточной центровке валов агрегата.

Стук в подшипнике скольжения и в подшипнике качения объясняется серьезным износом вкладыша или разрушением дорожек и тел качения, а повышенная вибрация – это следствие нарушения балансировки ротора из-за взаимодействия со шкивами и муфтами, либо же результат неточной центровки валов агрегата и перекоса соединительных полумуфт.

Электродвигатель постоянного тока также может иметь свои характерные неисправности:

Под серьезной нагрузкой якорь машины может не вращаться, а если попытаться развернуть его внешним усилием, то двигатель будет работать «вразнос». Причины: плохой контакт или полный обрыв цепи возбуждения, межвитковые или короткие замыкания внутри обмотки независимого возбуждения. В условиях номинальных значений напряжения сети и тока возбуждения частота вращения якоря может быть меньше или больше установленной нормы. В этом случае виновниками такой ситуации являются щетки, сдвинутые с нейтрального положения по направлению вращения вала или против него.

Читать еще:  Где находятся датчики температуры двигателя на приоре

Может быть и такое, что щетки одного знака искрят немного сильнее, нежели щетки другого знака. Возможно, по окружности коллектора расстояния между рядами щеток не одинаковые, или присутствует межвитковое замыкание в обмотках одного из основных или дополнительных «плюсов». Если к искрению щеток добавляется еще и почернение пластин коллектора, которые расположены на определенном расстоянии друг от друга, то виновником такой ситуации, скорее всего, является плохой контакт или короткое замыкание в обмотке якоря. Также, не стоит забывать и о возможности обрыва в катушке якоря, присоединенной к почерневшим пластинам.

В тех случаях, когда темнеет лишь каждая вторая-третья пластина коллектора, причиной неисправности может быть ослабшая прессовка коллектора или выступивший миканит изоляционных дорожек. Щетки могут искрить даже при нормальном нагревании мотора и полностью исправном щеточном аппарате, что объясняется недопустимым износом коллектора.

Причинами повышенного искрения щеток, перегрева коллектора и потемнения его большей части обычно выступают дорожки изоляции (говорят – коллектор «бьет»). При вращении якоря мотора в разных направлениях щетки тоже искрят с различной интенсивностью. Тут причина одна – смещение щеток с централи.

Если на коллекторе наблюдается повышенное искрение щеток, то стоит проверить плотность их прилегания, а также провести диагностику на предмет наличия дефектов рабочей поверхности щеток. Кроме того, причина может заключаться в неодинаковом давлении щеток или в их заклинивании в щеткодержателе. Естественно, при обнаружении любой из перечисленных проблем ее необходимо грамотно устранить, но довольно часто сделать это могут только высококвалифицированные специалисты.

Устранение неисправностей электродвигателя

Качественный капитальный ремонт электродвигателей можно произвести только на специализированных предприятиях. В ходе выполнения текущих ремонтных работ выполняется разборка силового агрегата и последующая частичная замена износившихся деталей. Давайте рассмотрим порядок выполнения всех действий на примере асинхронного электрического мотора.

На начальном этапе с помощью винтового съемника со шкива электродвигателя снимают шкив или полумуфту. После этого нужно открутить болты крепления кожуха вентилятора и снять его. Дальше, используя все тот же винтовой съемник, надо отвернуть стопорный винт и снять сам вентилятор. При необходимости, этим же инструментом можно снять с вала двигателя и подшипники, а затем, отвернув болты крепления, демонтировать и их крышки.

После этого следует выкрутить болты крепления подшипниковых щитов и легкими ударами молотка через деревянную прокладку снять эти щиты. Чтобы не повредить сталь и обмотки, в воздушный зазор помещают картонную прокладку, на которую опускают ротор. Сборка электромотора проводится в обратном порядке.

После выполнения ремонтных работ (особенности проведения зависят от характера поломки) электродвигатель следует протестировать. Для этого просто проверните ротор, взявшись за шкив, и если сборка выполнена правильно, то агрегат должен легко вращаться. Если все нормально, двигатель устанавливают на место, подключают к сети и проверяют работоспособность в режиме холостого хода, после чего мотор подсоединяют к валу станка и снова тестируют. Давайте рассмотрим варианты устранения неисправностей электродвигателя на примере некоторых характерных поломок.

Итак, представим себе, что мотор не запускается из-за отсутствия напряжения в сети, отключения автомата или перегорания предохранителей. Наличие напряжения можно проверить при помощи специального устройства – вольтметра переменного тока, обладающего шкалой 500 В, или же используя низковольтный индикатор. Устранить проблему можно путем замены перегоревших предохранителей. Обратите внимание! Если хотя бы один предохранитель перегорает, двигатель будет издавать характерный гул.

Обрыв фазы обмотки статора можно обнаружить с помощью мегомметра, но перед этим следует освободить все концы обмоток мотора. Если внутри фазы обмотки обнаружен обрыв, то двигатель придется отправить в профессиональный ремонт. Допустимой нормой понижения напряжения на зажимах двигателя при его запуске принято считать показатель в 30% от номинального значения, который обусловлен потерями в сети, недостаточной мощностью трансформатора или его перегрузкой.

Если Вы заметили снижение напряжения на зажимах электромотора, необходимо выполнить замену питающего трансформатора или же увеличить сечение проводов подводящей линии. Отсутствие контакта сети питания в одной из обмоток статора (выпадение фазы) вызывает увеличение тока в обмотках элемента и снижение количества оборотов. Если Вы оставите двигатель работать на двух обмотках, то он просто сгорит.

Помимо перечисленных электрических неполадок, электродвигатели могут страдать и от неисправностей механического характера. Так, причиной чрезмерного нагревания подшипников часто становится неправильная сборка этих деталей, плохая центровка мотора, загрязнение подшипников или слишком сильный износ шариков и роликов.

В любом случае, прежде чем переходить к непосредственным действиям, следует провести полную диагностику электродвигателя и взаимодействующих с ним деталей. Процедура осмотра начинается с проверки аккумуляторной батареи, и если она находится в исправном состоянии, тогда следующий шаг – это проверка поступления питания на электросхему контроллера (ЭБУ, который управляет скоростью вращения электродвигателя). Вполне возможно, что на отрезке пути от аккумулятора до платы Вы обнаружите обрыв проводов. Поломка электронной платы – явление нечастое, но если имеются хотя бы малейшие сомнения насчет ее исправности, то лучше сразу визуально оценить состояние детали. Если имел место сильный нагрев элементов платы, Вы сразу обнаружите почерневшие и вздувшиеся участки с возможными подтеками.

В том случае, когда автовладелец обладает хотя бы минимальными знаниями в области электроники, он может самостоятельно проверить предохранители, полупроводниковые детали (вроде диодов и транзисторов), все контакты, емкости и качество пайки.

Когда во включенном состоянии на выходе ЭБУ имеется рабочее напряжение, то, как правило, причину неисправности стоит искать в самом электродвигателе. Сложность ремонта агрегата зависит от конкретной неисправности и типа механизма. Так, при обследовании электромоторов переменного тока с роторным питанием, прежде всего, необходимо проверить контактные щетки, ведь именно они чаще всего являются причиной поломок двигателей указанного типа. После этого следует проверить обмотки на наличие обрыва или короткого замыкания. В случае обрыва тестер не покажет никакого значения сопротивления, а при коротком замыкании – показатель сопротивления будет соответствовать нулю или единице Ома.

Обнаружив неисправность, ее, конечно же, нужно устранить. Сделать это можно либо путем ремонта и замены вышедших из строя частей (например, щетки), либо посредством замены всего мотора на исправный аналог.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector