Асинхронный двигатель насос схема
Конструктивная схема установок ППУ низкого давления
Качество будущего покрытия из пенополиуретана зависит от насосов, распылителя и нагрева.
Насосы должны быть высокоточными, чтобы дозировка компонентов происходила без больших погрешностей, а пистолет-распылитель должен быть оснащен эффективной камерой смешивания и иметь герметичную систему запирания каналов.
Насос НШ состоит из трех шлифованных пластин, ведущего вала и двух шестерен. В установках «Прогресс» используются импортные насосы НШ специально предназначенные для подачи компонентов ППУ.
Многие отечественные фирмы предлагающие оборудование ППУ оснащают свои установки насосами 21НШ. Это насосы были разработаны для производства синтетических нитей и прокачки очень вязких жидкостей. Рекомендованные обороты — 10-30 об/мин., когда как на установках ППУ они используются в режиме от 150 до 500 (!) об/мин. Никаких уплотнителей в этих насосах нет и часто они дают течь из-за того, что вязкость компонентов ППУ гораздо ниже той, для которой эти насосы предназначены.
К тому же, эти насосы поставляются со складов производства времен СССР и среди них встречается много некондиции. Современные аналоги, во-первых сделаны из менее прочной стали, во-вторых очень дорогие.
Тем не менее, насосы 21НШ почти 20 лет устанавливались на все отечественные установки для ППУ и устанавливаются до сих пор. Время не стоит на месте, сейчас стали доступны другие насосы, которые больше подходят для оборудования ППУ.
Например, наша компания использует шестеренные насосы СВ марки 4, 6, 10. Производство КНР. Корпус сделан из износостойкого серого чугуна, шестерни из нержавеющей стали SS306. Давление до 0,6 МПа. Это не серийные насосы, т.к. наши специалисты внесли изменения в конструкцию для того, чтобы адаптировать эти насосы для подачи компонентов ППУ и ПМ. Серийные насосы могут работать при температуре до +60, наши до +120. Уплотнители сделаны по заказу в Тайване. Система внутренних каналов насоса также немного изменена.
Почему шестеренные насосы?
В январе 2013 года наша компания решила отказаться от насосов 21НШ, и у наших инженеров появилась задача найти подходящие насосы с нормальными характеристиками. Обратились в Китай, где среди изготовителей насосов, кроме небольших частных компаний есть весьма представительные, котрые работают исключительно на экспорт в Европу, Азию и США. Были произведены закупки 12 пар насосов, котрые теоретически могли подойти к нашему оборудованию. Затем начались испытания, котрые продлились полгода.
Результаты испытаний выявили основные недостатки поршневых и плунжерных насосов (проблема всасывания компонентов и быстрое истирание уплотнителя насоса на изоцианате, кристаллизация клапанов). Мембранные насосы также не выдержали испытаний на ресурс и также имели проблемы всасывания. Роторные насосы работают в пульсирующем режиме. Винтовые имеют небольшое давление. К тому же существует проблема избыточной производительности. Вообще, абсолютное большинство насосов предназначено либо для подачи ВОДЫ, к тому же холодной, либо для подачи масла. Тем не менее, в РФ продаётся оборудование ППУ с поршневыми насосами для подачи воды, что вызывает наше недоумение.
В итоге, наш выбор пал на шестеренные насосы, как оптимальные по всем параметрам, но их пришлось доработать для работы с вязкими жидкостями и оформить специальный заказ у производителя.
На фото изображены две шестерни. Слева — стандартная для таких насосов шестерня, справа — сделанная по нашему заказу. Разница налицо.
Электропривод установок
Для того, чтобы насосы начали подавать компоненты к пистолету, нужно привезти в движение валы насосов с помощью электропривода.
При вращении шестерен насосов в зоне входа образуется зона низкого давления и компоненты по шлангам поступают из емкостей к распылителю.
Все отечественные установки оснащаются двумя типами электроприводов:
Коллекторный двигатель (Электродрель)
- Небольшой вес (1,5 — 2 кг.)
- Небольшая стоимость.
- Регулировка оборотов.
- Быстрый ремонт или замена.
- Нуждается в эффективном воздушном охлаждении.
- Чувствителен к качеству охлаждающего воздуха.
- Повышенный уровень шума.
Асинхронный электродвигатель
- Возможность работать длительное время без перерывов.
- Пригоден для работы в любых условиях.
- Низкий уровень шума.
- Большой вес
- Высокая стоимость
Один электропривод? Или два?
Обычно на установки для ППУ устанавливается один электропривод. Затем через цепную или шестеренную передачи вращение передаётся на валы насосов.
Существует три способа передачи вращения привода на насосы.
Шестеренная передача. Установки «Пена», «Прогресс».
Ременная передача. Установки «ПГМ»
Цепная передача. Установки «Прогресс», «Промус», «ПГМ», «Наст».
Шестеренчатая и цепная передачи обеспечивают точное соотношение компонентов и не допускают проскальзывания. Шестеренная передача выше по КПД, чем цепная. Ременную передачу использовать не рекомендуется .
На каждом валу насосов крепится шестерня или звездочка с определённым количеством зубьев. Так достигается нужное соотношение компонентов. Одинаковое количество зубьев на двух валах — одинаковое вращение, одинаковая подача компонентов. Если нужно изменить соотношение, то на одном насосе меняется шестерня или звездочка на другую. Вращение становится разным и соотношение компонентов изменяется.
Если установлены два электропривода, то установить точное соотношение невозможно. Двух одинаковых электродвигателей не бывает. Разница может достигать 7%. Чтобы всё-таки добиться чёткого соотношения и следовательно, качественного ППУ, придётся устанавливать электронное устройство типа счётчика, который будет контролировать вращение обоих электромоторов. Это очень дорогая и капризная вещь, в реальных условиях напыления довольно быстро выходит из строя по причине влажности, пыли, перепадов напряжения, сотрясения и т.д.
Вывод. Соотношение компонентов должно устанавливаться механически, с помощью звездочек или шестерен. А это означает, что электропривод на установках должен быть один.
Мы каждый день узнаем о насоса что-нибудь новенькое, такое, о чем мы раньше, по многим причинам, и не задумывались. У нас есть насос, он прекрасно качает воду из источника, которой хватает на полив сада-огорода и пользование ею всеми членами семьи и на работу всей бытовой техники. Зачем нам знать еще больше об этом удивительном агрегате?
Мы даже знаем сейчас, что каждый, в принципе, бытовой насос, в зависимости от его конструкции, можно использовать, как в качестве перекачивающего устройства, придав ему механическую энергию внешнего привода, так и в качестве двигателя, через который можно получить дополнительную энергию. Например, раскручивая ротор электродвигателя насоса струей поступающей жидкости, можно, при некотором изменении конструкции, получить источник электроэнергии в доме.
Если взять более простые конструкции, то можно привести пример водяной мельницы, где двигателем и своеобразным механическим насосом можно рассматривать ее водное колесо. Многие, если не сказать, большинство гидронасосов имею возможность обратного применения.
Но сейчас речь пойдет совсем о другом. Мы поговорим о стандартном применении гидронасосов и источниках энергии для них, которые применяются в бытовых и промышленных агрегатах перекачки воды. Мы будем говорить о самом выгодном виде механических двигателей для насосов – электродвигателях, которые имеют самое широкое распространение в насосах, как бытовых, так и во всех отраслях промышленности.
Асинхронный электродвигатель. Плюсы и минусы применения. Конструкции типов
Положительные стороны от применения электродвигателей в работе насосов видны с первого раза: это частые включения (повторные пуски) двигателей в работу в зависимости от водных параметров в магистрали, малое энергопотребление, простота конструкций и выгодность производства, динамичность и малые размеры электродвигателей и многое другое.
Мы разберем самый «выгодный» в производстве и простой в бытовом применении асинхронный электродвигатель (индукционный двигатель), как электрическую машину переменного тока с частотой вращения ротора меньшим по сравнению с частотой магнитного поля, которое создается токами в обмотке статора:
Он прост в изготовлении;
Имеет относительно низкую цену;
Надежен и неприхотлив при работе;
Энерго- и эксплуатационно малозатратен;
Имеет простой доступ к подключению в домашнюю электросеть без дополнительных преобразующих устройств;
Нет необходимости регулировать частоту вращения ротора.
Но при этом такие электромашины с асинхронным (индукционным) двигателем:
Имеют низкий по силе пусковой момент;
Большую величину пускового тока;
Мощность с низким коэффициентом;
Сложности с регулировкой скоростных характеристик ротора и отсутствие необходимой точности вращения;
Скоростные характеристики вращения ротора ограничиваются частотными показателями сети (бытовая сеть имеет частоту в 50 Гц – двигатель может максимально развить обороты не более 3000 в минуту);
Огромная (в квадрате) связь электромагнитного поля на статоре с напряжением в сети – при любом изменении напряжения в 2 раза, вращающий момент двигателя измениться в 4 раза, что намного хуже таких же показаний в электродвигателях на постоянном токе.
Для людей далеких от всяких технических конструкций проведем легкий «ликбез»:
Асинхронный электродвигатель имеет в своей конструкции статор (часть электромотора, которая находится в неподвижном, стабильном положении) и ротор (часть, которая вращается при подключении двигателя к сети), они разделены воздушным зазором и не соприкасаются между собой;
Статорная обмотка является многофазной (3-хфазной), с проводниками равноудаленными один от другого на 120 градусов относительно оси вращения;
Магнитное поле возникает в магнитопроводе статора, который меняет полярность под воздействием частоты тока проходящего по обмотке. Магнитопровод представляет собой пластины из электротехнической стали, собранных методом шихтовки в общий блок;
Роторы в асинхронном двигателе могут быть конструктивно 2-х типов: короткозамкнутый и фазный. Их единственное различие – это исполнение обмотки на роторе, при аналогичном магнитопроводе как у статора.
Короткозамкнутый ротор имеющий обмотку в виде «беличьего колеса» по аналогии конструкции, собирается из алюминиевых (иногда из меди или латуни) стержневых проводников, которые замкнуты с 2-мя торцевыми кольцами, проходя через специальные пазы в сердечнике ротора.
У такого типа обмоток ротора при нерегулируемом пуске образуется не очень большой по величине пусковой момент, но требующий больших величин тока. Сейчас применяют в основном роторы с глубокими пазами для стержней, что позволяет увеличить сопротивление в обмотке и уменьшить величину пускового тока. Из-за таких недостатков раньше мало применяли короткозамкнутую схему обмотки ротора, но теперь при развитии линии частотных преобразователей многие фирмы достигли эффекта плавного пуска электродвигателей, регулируя наращивание частоты пускового тока.
Так появились электромашины с короткозамкнутой схемой ротора со ступенчатым регулированием скорости вращения вала, появились многоскоростные электродвигатели с изменением числа пар полюсов в обмотке статора.
Разновидностью асинхронного электродвигателя с короткозамкнутым ротором считаются двигатели с массивными роторами, где эта деталь механизма изготовлена полностью из ферромагнитного материала (стальной цилиндр) – это одновременно и магнитопровод и обмотка-проводник. Вращение ротора здесь происходит за счет создания индукции магнитного поля ротора, во взаимодействии с вихревыми токами магнитного потока статора. Такие конструкции намного проще изготавливать, следовательно они обходятся дешевле в производстве, имеют большую механическую прочность, что очень необходимо для машин с большой скоростью вращения и они имеют более высокую величину пускового момента.
Принцип работы асинхронного электродвигателя с фазовым ротором
Асинхронные электродвигатели с фазовым ротором допускают плавное регулирование скорости вращения вала ротора в широком диапазоне. Фазный ротор содержит в своей конструкции многофазную (3-хфазную) обмотку, выведенную на 2 контактных кольца, которые соединены с ротором единой конструкцией. Соединение с регулированной по величине напряжения электросетью происходит за счет графитовых или металлографитовых щеток, соприкасаемых с кольцами в единую цепь с обмотками ротора.
В конструкцию управления работой ротора входят так же:
Пускорегулирующий реостат, как активное сопротивление к каждой фазе;
Дроссели индуктивности каждой фазы роторного узла, что, в конечном итоге, позволяет уменьшить пусковые токи и держит их на постоянном уровне;
Дополнительны источник постоянного тока, что позволяет получать величины синхронной электромашины, то есть зависимость оборотов от частоты напряжения на ротора без разниц величин;
Для управления скоростными характеристиками и электромагнитными полями на роторе включено питание установки от инвертора для машин с двойным питанием. Но возможно использовать эту конструкцию без помощи инвертора с заменой фазировки на противоположную от статорной.
Возможны еще несколько вариантов электродвигателей для насосов. Например, трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора и другие электромашины.
Область применения центробежных насосов для воды
Центробежные насосы используются для перекачки неагрессивных жидкостей, питьевой воды и других сред, не содержащих абразивных включений. Агрегаты имеют современное функциональное оснащение и способны эксплуатироваться в автоматическом режиме.
Распространенные сферы применения центробежных насосов:
- предприятия пищевой промышленности;
- коммунальные службы;
- объекты сельского хозяйства;
- системы орошения и полива;
- автономное водоснабжение, кондиционирование, охлаждение и т. д.
Центробежные насосы нуждаются в защите от атмосферных воздействий, поэтому монтируются в отдельных помещениях или на закрытых площадках.
Управление асинхронным двигателем
Прямое подключение к сети питания
Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.
С помощью магнитных пускателей можно реализовать схему:
- нереверсивного пуска: пуск и остановка;
- реверсивного пуска: пуск, остановка и реверс.
Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.
Нереверсивная схема
Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель
Реверсивная схема
Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы
Частотное управление асинхронным электродвигателем
Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.
Функциональная схема частотно-регулируемого привода
- В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
- скалярное управление;
- векторное управление.
Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).
Скалярное управление асинхронным двигателем с датчиком скорости
Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.
Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.
Полеориентированное управления асинхронным электродвигателем по датчику положения ротора
Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.
- По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
- полеориентированное управление по датчику;
- полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Полеориентированное управления асинхронным электродвигателем без датчика положения ротора
Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.
Напряжение от источника питания прикладывается к обмотке статора, которая намотана как три группы катушек индуктивности. Под действием этого напряжения через обмотку потечет переменный трехфазный ток, который и создаст вращающееся магнитное поле. В момент пересечении замкнутой обмотки ротора, это магнитное поле, в соответствии с законом об электромагнитной индукции, сгенерирует в ней электрический ток. Взаимодействие вращающегося магнитного поля статора и тока ротора генерирует вращающийся электромагнитный момент, который и приводит ротор в движение. Благодаря сумме этих моментов, создаваемых разными проводниками, появляется результирующий момент заставляющий вращаться ротор в том направлении, в котором находится электромагнитное поле в статоре. Ротор и магнитное поле вращаются с разными скоростями, т.е. асинхронно. У этого типа электрических двигателей скорость, с которой будет вращаться ротор, всегда будет ниже скорости, с которой вращается поле в статоре электродвигателя.
С самого начала вращения ротор может осуществить механическую работу с помощью соединенного с ним вала, который передает вращательное движение машине, насосу, вентилятору и т.п. Принцип работы асинхронного электродвигателя отлично рассказывается в видео, чуть ниже:
АД Устройство
Асинхронный двигатель с фазным ротором используются в приводах, которым необходим большой пусковой момент – лифты, краны, и т.п, но при ограниченном номинале значение тока запуска.
Основные компонентами любого асинхронного двигателя являются ротор и статор, разделяемые воздушным промежутком. Другими частями необходимой составляющей, являются магнитопровод и обмотки, остальные компоненты лишь конструктивные, задача которых обеспечить требуемую жесткость, прочность, возможность вращения и стабильность двигателя
Статор – неподвижная часть электродвигателя, на внутренней стороне которого имеются обмотки. Обмотка статора — это обычно трехфазная обмотка, в которой проводники распределены достаточно равномерно по всей площади статора и уложены пофазно в специальных пазах, сделанных с угловым расстоянием 120 градусов. Статорные фазы соединяются методом «звезды» или «треугольника» — и подключены к трехфазному питанию. В процессе вращения в обмотках возбуждения, осуществляется перемагничивание магнитопровода статора, поэтому он изготавливается из отдельных пластин из специальной электротехнической стали – таким образом удается существенно снизить неизбежные магнитные потери.
Асинхронный двигатель с фазным ротором устройство: на роторе находятся три фазные обмотки, подключенные обычно по схеме «звезда». К медным кольцам закрепленным на валу и изолированных от сердечника ротора, подключены концы фазных обмоток. Благодаря такому устройству и конструкции, асинхронный двигатель с фазным ротором получил название – двигатель с контактными кольцами.
Асинхронный двигатель с фазным ротором особенности запуска
Асинхронные двигатели имеют очень простое устройство, их достаточно легко обслуживать в процессе эксплуатации, а главное низкую себестоимость и высокую надежность. Но у них есть и один огромный минус – они потребляют реактивную составляющую мощности. Поэтому их максимальный уровень мощности сильно зависит от мощности самой системы энергоснабжения. Ко всему прочему, из значения пускового тока втрое выше рабочего. В условиях слабой мощности питающей системы энергоснабжения, это может вызвать серьезное падение напряжение и отключение других работающих устройств. АД с фазными роторами, благодаря наличию в схеме ротора пусковых реостатов, могут запускаться с куда меньшим пусковым током.
Сопротивления, находящиеся в схеме ротора, помогают снизить уровень тока не только во время запуска, но и при торможении, реверсе и даже снижении количества оборотов. По мере того, как АД с фазным ротором набирает скорость , для поддержания нужного ускорения, сопротивления исключаются из схемы. То есть когда разгон завершается и АД выходит на нужную частоту, все резисторы цепи шунтируются, двигатель начинает работать со своей исинной механической характеристикой.
Схема запуска асинхронного двигателя с фазным ротором
При включении напряжения питания реле времени КТ1 и КТ2 срабатывают, размыкая свои контакты. После нажатия тумблера запуска SB1 срабатывает контактор КМ3 и запускается двигатель с сопротивлениями, которые добавлены в схему – в этот момент времени на контакторах КМ1 и КМ2 питание отсутствует. В момент подключения контактора КМЗ, в цепи КМ1 реле КТ1 замыкает свой фронтовой контакт через определенный промежуток времени, заданный задержкой. По истечению которого электродвигатель разгоняется, ток ротора начинает снижаться происходит подлючение контактора КМ1 – осуществляется шунтирование первой пусковой ступени сопротивлений. Ток снова увеличивается, но по мере разгона его значение начинает снижаться. Одновременно с этим отключается реле КТ2, и с выставленной задержкой происходит замыкание контакта в цепи КМ2. Происходит шунтирование второй ступени сопротивлений. Двигатель начинает работать в штатном режиме.
Благодаря ограниченному пускового тока, асинхронный двигатель с фазовым ротором можно применять и в слабых сетях.
Асинхронный двигатель с фазным ротором достоинства и недостатки устройства
Если сравнивать его с обычным АД с короткозамкнутым ротором, имеется два основных преимущества:
На практике АД с фазным ротором идеально подходят для случаев, когда нет необходимости в использовании широкой и плавной регулировки скорости и требуется большая мощность двигателя. Для правильного подключения АД необходимо правильно определить начала и концы фазных обмоток.
Это типовой маломощный электродвигатель мощностью до 1500 Вт, который используется в установках, в которых имеется небольшая нагрузка на валу в момент старта, а также в тех случаях, когда питание ЭД может быть только от однофазной сети. Обычно эти двигатели, используют в стиральных и посудомоечных машинах, небольших вентиляторах и т.п.
У типового трехфазного асинхронного двигателя имеется шесть выводов статорной обмотки – три конца и начала. Выводы могут соединяться методом треугольника или звезды. Для этого на корпусе ЭД сделана коммутационная коробка, в которую выводятся начала фаз С1, С2, С3 и их концы С4, С5, С6.
Подборка книг и инструкций связанная с теорией и практикой работы электродвигателей (ЭД), а также советы и рекомендации по их ремонту
Выбор электродвигателей к производственным механизмам — Представлены характеристики различных типов ЭД для наиболее распространенных механизмов, а также методика и расчет их выбора для обеспечения заданной производительности, надежности и экономичности.
Вентильные электродвигатели малой мощности для промышленных роботов — основы теории, конструкция и схемы вентильных ЭД постоянного тока. Дан анализ путей повышения их энергетических показателей и расширения функциональных возможностей. Подробные схемы датчиков положения ротора и частоты вращения с описанием их работы
Как самому рассчитать и сделать электродвигатель — рассмотрены расчеты ЭД малой мощности постоянного и переменного тока. Даны схемы включения трехфазных электродвигателей в однофазную сеть
Аварийные режимы асинхронных электродвигателей и способы их защиты -Расказывется о работе АД при отключениях и несимметрии напряжения, питании от маломощных сетей, большой неравномерности нагрузки
Ремонт электродвигателей Советы по выявлению и устранению неисправностей, организации и проведения ремонтов и испытаний ЭД различных типов
Автоматическое измерение выходных параметров электродвигателей
Для оценки свойств любого электродвигателя (ЭД) осуществляют построению механической характеристики. Механическая характеристика электродвигателя описывает определенную зависимость между электромагнитным моментом и частотой скольжения, либо вращения. Скольжение – показывает, насколько частота вращения магнитного поля обгоняет частоту вращения ротора ЭД.
Имеется интересная особенность применения асинхронного двигателя с фазным ротором в роли асинхронного преобразователя частоты (АПЧ), т.к частота тока протекающего в роторе ЭД пропорциональна частоте статорного тока, а коэффициент пропорциональности – скольжение. С помощью подобных преобразователей из типовой частоты 50 Гц можно получить 100, 200 Гц.
Типовая схема подсоединения АПЧ выглядит, как на рисунке ниже:
Обмотка статора подсоединена к питающей сети с частотой f1. Частоту f2 получают с концов роторной обмотки ротора, куда она поступает через контактные кольца и щетки.
Для такого преобразования частоты требуется приводной двигатель, механически связанный с ротором АПЧ. Таким ЭД может быть синхронный или асинхронный двигатель, если необходимо задать определенную частоту, а можно использовать двигатель постоянного тока, если нужно осуществлять плавную регулировку частоты.
Если ротор преобразователя вращать в режиме противовключения, т.е против направления вращения магнитного поля статора, то скольжение s>1, поэтому, частота получаемого тока будет выше частоты статора f2>f1. Если поменять направление вращения приводного двигателя (ПД), то скольжение s 1, а значит, в числителе формулы выше должен стоять знак плюс, иначе s
Преимущества применения частотно регулируемых приводов для управления АД
- Облегчает пусковой режим привода.
- Позволяет двигателю долго работать, независимо от степени загрузки.
- Обеспечивает большую точность регулировочных операций.
- Позволяет контролировать состояние отдельных узлов в цепях промышленной электрической сети. За счет этого возможно вести постоянный учет количества времени, наработанного двигателями, чтобы потом оценивать их результативность.
- Наличие электронных узлов дает возможность диагностировать неисправности в работе двигателя дистанционно.
- К устройству можно подключать различные датчики обратной связи (давления, температуры). В результате скорость вращения будет стабильна при постоянно меняющихся нагрузках.
- При пропадании сетевого напряжения включается управляемое торможение и перезапуск.
- В результате:
- повышается уровень КПД за счет чего можно сэкономить порядка 30-35 % электроэнергии;
- количество и качество конечного продукта возрастает;
- снижается износ комплектующих механизмов;
- возрастает срок службы оборудования.
Напряжение питания электродвигателей АИР
Мощность | 3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | ||||||||
Маркировка | U тр, В | U зв, В | Маркировка | U д | U y | Маркировка | U тр | U зв | Маркировка | U тр | U зв | |
1,1 | АИР71В2 | 220 | 380 | АИР80А4 | 220 | 380 | АИР80В6 | 220 | 380 | АИР90LB8 | 220 | 380 |
1,5 | АИР80А2 | АИР80В4 | АИР90L6 | АИР100L8 | ||||||||
2,2 | АИР80В2 | АИР90L4 | АИР100L6 | АИР112МА8 | ||||||||
3 | АИР90L2 | АИР100S4 | АИР112МА6 | АИР112МВ8 | ||||||||
4 | АИР100S2 | 380 | 660 | АИР100L4 | 380 | 660 | АИР112МВ6 | 380 | 660 | АИР132S8 | 380 | 660 |
5,5 | АИР100L2 | АИР112М4 | АИР132S6 | АИР132М8 | ||||||||
7,5 | АИР112M2 | АИР132S4 | АИР132М6 | АИР160S8 | ||||||||
11 | АИР132M2 | АИР132М4 | АИР160S6 | АИР160М8 | ||||||||
15 | АИР160S2 | АИР160S4 | АИР160М6 | АИР180М8 | ||||||||
18,5 | АИР160M2 | АИР160M4 | АИР180М6 | АИР200М8 | ||||||||
22 | АИР180S2 | АИР180S4 | АИР200М6 | АИР200L8 | ||||||||
30 | АИР180M2 | АИР180M4 | АИР200L6 | АИР225М8 | ||||||||
37 | АИР200М2 | АИР200М4 | АИР225М6 | АИР250S8 | ||||||||
45 | АИР200L2 | АИР200L4 | АИР250S6 | АИР250М8 | ||||||||
55 | АИР225М2 | АИР225М4 | АИР250М6 | АИР280S8 | ||||||||
75 | АИР250S2 | АИР250S4 | АИР280S6 | АИР280М8 | ||||||||
90 | АИР250М2 | АИР250М4 | АИР280М6 | АИР315S8 |