4 х тактный двигатель внутреннего сгорания схема
Что такое рабочий цикл двигателя
Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.
- Что такое мертвые точки и такты ДВС
- Как работает четырехтактный двигатель
- Особенности работы двухтактных моторов
История четырехтактного двигателя
Началом истории самого популярного ДВС считаются 70-е годы 19 века, тогда первую рабочую модель такого мотора представил немецкий инженер и предприниматель Николаус Отто. Его работы были основаны на трудах предшественников, пытавшихся найти альтернативу паровой машине.
В начале 19 века французский изобретатель Филипп Лебон создал агрегат, в котором благодаря его же открытиям, горючая смесь загоралась в цилиндре двигателя, а не в топке. В середине века в Бельгии был создан двухтактный двигатель внутреннего сгорания, который затем усовершенствовал Отто. Его четырехтактный движок обладал более высоким КПД, был экономичней и не превосходил предшественника по размерам.
Отто не оценил перспектив своего изобретения, и не прислушался к своему сотруднику – Готлибу Даймлеру, который предложил создать на основе четырехтактного двигателя автомобиль. Даймлер ушел из команды Отто и через несколько лет такой автомобиль все-таки создал. Попутно добавил в него несколько своих идей. Например – вставил в цилиндры трубки накаливания.
Во второй половине 19 века был изобретен карбюратор, а конце века к нему добавили форсунку.
С тех пор кардинально четырехтактный ДВС переделывать не пришлось. Основная сфера современных изобретений – газораспределительная система, конструктивные модификации – OHV, SV или OHC (аббревиатуры означают расположение клапанов и распредвала), а также варианты системы смазки («сухой» картер).
Цикл работы автомобильного движка
Работа 4-тактного двигателя происходит по определенному циклу, состоящему из четырех тактов. Полный цикл завершается после совершения коленчатым валом двух полных оборотов или четырех ходов поршня. Четырехтактный силовой агрегат в процессе функционирования оказывает усиленное воздействие на коленчатый вал для приведения в действие рабочих систем автомобиля.
В процессе работы двигателя поршень совершает ходы в 4 такта:
- впуск;
- сжатие;
- расширение;
- выпуск.
При функции впуска полость цилиндра заполняется топливовоздушной смесью в результате перемещения поршня в нижнее положение, в нижнюю мертвую точку (НМТ).
Во время движения поршня в верхнюю мертвую точку (ВМТ) рабочая смесь сильно сжимается.
Функция расширения заключается в воспламенении топливовоздушной смеси под воздействием высокого давления, возникающего в процессе сжатия, или при помощи электрической искры. При воспламенении газы мгновенно расширяются и с большой силой толкают поршень вниз.
Четвертый такт выпуска производится благодаря перемещению поршня в верхнее положение. В это время образовавшиеся продукты сгорания выталкиваются из цилиндров.
Особенности работы 4-х тактного двигателя
В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.
Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.
Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.
Двухтактный двигатель – лучше четырехтактного!
Какие бы хитроумные устройства ни получал современный поршневой двигатель внутреннего сгорания, он не очень далеко ушёл от уровня техники Второй мировой войны. О том, как важны некоторые нововведения в системы работы двигателя, без хорошей рекламы порой и не догадаться, настолько они малоэффективны. Сегодня хорошо известны все слабые места(процессы), не позволяющие поршневому мотору преодолеть существующий барьер эффективного КПД в 25-45%, но при всём этом, он самый распространённый и надёжный!
Двухтактный двух вальный поршневой двигатель внутреннего сгорания с изменённой прямоточной продувкой тот мотор, который в полной мере раскрыл потенциал поршневого ДВС. Да, схема не нова, но только подобная схема позволяет решить весь комплекс проблем сразу! На примерах недостатков существующих поршневых моторов, и того, как это устранено в новом двухтактном двигателе с изменённой схемой продувки, постараюсь объяснить суть изобретения.
Четырехтактные ДВС не эффективно используют энергию газов в фазе рабочего хода
Во время рабочего хода, т.е. сгорания и расширения газов в камере сгорания их давление действует с одинаковой силой не только на поршень, но и на головку цилиндров, что становиться причиной вибраций любого работающего мотора. Оппозитный мотор частично решет эту проблему, но не является панацея! Он конечно лучше сбалансирован, но газы по-прежнему давят на головку цилиндров, не принося двигателю полезной работы.
Моторы со встречными поршнями в цилиндре решают эту проблему, но существующие сегодня образцы имеют свои сложности и недостатки.
В двигателе новой двухвальной конструкции применили схему с изменённой прямоточной продувкой, уменьшили вдвое ход поршня, по сравнению со значениями хода в обычном четырёхтактном моторе. К примеру с 80 мм ход уменьшается до 40 мм, но в итоге с двух валов получается та, же сумма ходов 80 мм и величина крутящего момента на валу сохраняется неизменной. В результате разложение рабочего хода, конструкторы получили эффект прибавки мощности в 42%, при одинаковом давлении газов в фазе расширения, у сравниваемых моторов. Для скептиков уточним, что потери на трение у нового мотора двухтактного, в расчёте на один цилиндр, такие же, как и у четырёхтактного мотора.
Не буду вдаваться в подробности, боясь запутать. Хотите убедиться? Возьмите пружину прикрепите к ней два одинаковых груза. В первый раз, растянув пружину, отпустите груз только с одной стороны и зафиксируйте время, за которое пружина сожмётся, во второй раз, растянув пружину, до таких же размеров отпустите два груза с двух сторон одновременно и также зафиксируйте время. Сравнив, увидите, что во втором случае такая же по величине работа, будет выполнена на 29% быстрее, вот вам и прибавка к мощности, ведь мощность это работа в единицу времени. Пружина с точки зрение физики сравнима со сжатым газом, который мы имеем в процессе рабочего хода в камерах сгорания сравниваемых моторов. При одинаковых значениях давления в фазе расширения рабочий ход у нового мотора выполнится быстрее.
Следует учесть, что в схеме со встречными поршнями отдача тепловой энергии топлива в энергию расширяющихся газов больше, чем у одновального мотора (нет головки цилиндров). Поэтому при одинаковых количествах сгоревшего топлива в камере сгорания, давление газов у нового мотора будет значительно выше, поэтому и рассчитывать «эффект коротких ходов» (прибавки мощности в 42%), необходимо с поправкой на это. Результат — одна и та же порция топлива выдаст мощность в два раза больше чем в обычном четырёхтактном моторе!
Почему столь весомая часть вклада в КПД нового мотора до сих пор ни как ни применялась!?
Впервые в мире этот эффект был опубликован в описании к патенту № 65547, заявленного в 1999 году в Украине! Пусть кто-то возразит, что это всё есть у американского ОПОС, кстати, он сам подтверждение преимущества схемы нового мотора, только благодаря этому эффекту он и получил приличные результаты по экономичности и мощности, проработав на стендах более 500 моточасов, Питер Хоффбауер опоздал не на один год! ДВС с изменённой схемой продувки «ДИСП», первый патент № 65547 получен в 2004году. Американский патент на ОПОС получен в 2008 году. Декабрь 2012 года принято решение на выдачу патента по заявке № а201110260, модификацию старой модели «ДИСП» (о нём и идёт рассказ).
С увеличением хода поршней у двух вального мотора, теряется эффект прибавки мощности. Увеличение крутящего момента в моторе не компенсирует потерь на трение, увеличивающиеся из-за повышения линейной скорости поршней и снижения теплового КПД, из-за неполного сгорания топлива в результате плохой продувки. Именно поэтому существующие моторы со встречными поршнями не получили такого широкого применения, как четырёхтактные поршневые моторы!
Процесс сгорания топлива у современного мотора далек от идеала. Топливо по-прежнему не сгорает полностью.
Основная причина этому: не достаточно времени в процессе сгорания смесь пребывает в сжатом виде, особенно на высоких оборотах. После прохождения В.М.Т. поршень удаляясь от головки цилиндров, увеличивает объём цилиндра, в котором в данный момент времени происходит сгорание смеси, что становится причиной медленного и не полного сгорания топлива. У разных моторов показатель различный (зависит от оборотов) 5 — 15% потерянного (недогоревшего) с выхлопом топлива, самые большие потери у двухтактных моторов и дизельных моторов.
Ощутимый довесок, чтобы побороться за него!?
Современные системы непосредственного распределённого впрыска, частично решают эту проблему, но, к сожалению, только этого не достаточно для полного сгорания топлива на высоких оборотах двигателя. Единственный мотор, в котором можно комплексно решить проблему — это новый двигатель со встречными поршнями. Механизм синхронизации вращения валов, позволяет регулировать время, в течение которого поршни будут сохранять неизменным расстояние между собой при встрече в В.М.Т., сохраняя тем самым неизменным объём камеры сгорания столько, сколько это необходимо!
Низкий тепловой КПД
Как решают эту проблему сегодня: — повышают рабочую температуру охлаждающей жидкости, а самым простым и эффективным способом решения данной проблемы, является уменьшение площади контакта горящей смеси с системой охлаждения двигателя. У двух вального двигателя камера сгорания образуется между поршнями, поэтому энергия переходит в расширяющиеся газы, а не в головку цилиндра. В двигателе с изменённой схемой продувки, площадь цилиндра в два раз меньше, площади цилиндра обычного двигателя со встречными поршнями, поэтому потери тепла в систему охлаждения у него наименьшие из всех поршневых моторов и соответственно самый высокий тепловой КПД!
По разным сведениям подобным образом можно на 10 — 15% увеличить эффективный КПД поршневого мотора, что, согласитесь не мало!
Некачественная продувка цилиндра существующих двухтактных моторов, в том числе и с прямоточной продувкой.
Необходимость сжатия воздуха для такта продувки у старых моторов со встречными поршнями дополнительным устройством, чаще всего центробежным или осевым компрессорам. Для качественной продувки этого не достаточно, да и на приведение их в действие нужно отдельно и прилично отдать механической энергии. Если начать использовать кинетическую энергию выхлопных газов для привода турбокомпрессора (как это в основном и делают), получится мультик «про Мюнхгаузена», когда он сам себя вытащил за парик из болота. Проталкивать газы в выхлопную трубу, используя их же кинетическую энергию!? Реальность не мультик, поэтому и продувка цилиндра плохая, и результат: топливо не догорает до конца. Кроме этого, подобная продувка быстро «убивает» ресурс таких моторов. В результате тепловой перегрузки коксуются кольца в поршнях, резко понижается компрессии в цилиндрах и далее по списку! Даже «свеженький» американский ОПОС не избежал этих проблем. Продувка в новом моторе выполняется воздухом, сжатым поршнями в продувочных камерах до значительно большего давления, чем в осевых компрессорах старых моторов, поршни охлаждаются воздухом во время впуска и продувки, что снимает с них тепловую перегрузку, повышая моторесурс и надёжность мотора в целом.
Существующие бензиновые поршневые моторы не экономны даже при использовании впрыска топлива
Для нормального воспламенения и горения, смесь у бензиновых моторов должна состоять из определённых пропорций бензина и воздуха. Фактическое количество воздуха и соответственно топлива, попадающего в цилиндр у большинства моторов, зависит от степени открытия дроссельной заслонки. В некоторых моторах эту функцию выполняют величиной подъёма впускного клапана. На маленьких оборотах в цилиндры бензинового мотора, поступает не большое количество воздуха, следовательно, степень его сжатия будет значительно меньше величины указанной в паспорте к мотору, с вытекающими плохими последствиями. Соответствовать номиналу степень сжатия бензинового мотора может только при максимальном нажатии на педаль газа. Известно, чем выше степень сжатия в цилиндрах поршневого мотора (до разумных пределов), тем выше эффективность его рабочего хода и КПД в целом. Пример: тот же дизельный мотор, в котором степень сжатия остается неизменно высокой. Можно конечно полечить и бензиновый ДВС, если сохранять необходимую расчётную степенью сжатия на всех режимах работы двигателя. Меняя дистанцию встречи поршней у В.М.Т. в новом моторе, выбираем необходимое, для определённых условий, оптимальное значение степени сжатия рабочей смеси, а это положительно отражается на топливной эффективности бензиновых ДВС. Конструкция двухтактного ДВС с изменённой схемой продувки позволяет изменять степень сжатия, благодаря своему механизму синхронизации вращения коленчатых валов в зависимости от режима работы мотора.
Модуль двухтактного ДВС с изменённой схемой продувки, имеет два цилиндра, коленчатые валы новой конструкции, что позволяет делать его особо компактным и лёгким, а также хорошо сбалансированным. Мощности такого модуля при объёме 1,5 — 2,0 литра, хватит для большинства транспортных средств. Моторы повышенной мощности предпочтительно собирать из двухцилиндровых модулей, что позволит даже очень большим и мощным автомобилям быть экономными, ведь высокая мощность используется редко и не очень долго. Вот и выходит, что имея старую двух вальную схему, двухтактный мотор с изменённой схемой продувки имеет абсолютно другие результаты по топливным и мощностным показателям. Не буду приводить «сногсшибательные» значения КПД, и так ясно, что он будет значительно выше КПД любого из теперешних поршневых и газотурбинных моторов.
Из устройства нового мотора исчез не нужный теперь компрессор, коленвалы выполнены не традиционно, что в несколько раз снизило их массу и массу двигателя в целом. Нет газораспределительного механизма и лишних цилиндров. Механизм синхронизация вращения коленчатых валов, позволяет управлять степенью сжатия смеси и выбирать необходимое оптимальное время сжатия топливной смеси для её полного и эффективного сгорания.
И заметьте, речь совсем не шла о супер материалах и никому неизвестных, а потому спорных, способах улучшения работы поршневого мотора!
Скажите кому выгодно, что таких моторов до сих пор нет в ваших автомобилях. Наверное, только тем, у кого топливный бак с волшебной функцией: — регенерация топлива и своя нефтяная вышка! Запасов топлива на планете Земля по прогнозам осталось лет на 50-60, благодаря такому мотору эти запасы можно растянуть на 100 -120 лет!
Виталий Лошаков
Принцип работы
Название говорит само за себя — последовательность работы двигателя делится на четыре такта:
- Впуск
Поршень движется вниз, открывается впускной клапан. Так в цилиндр попадает смесь бензина и воздуха. Затем клапан закрывается, а поршень доходит до нижней мертвой точки. - Сжатие
В момент, когда оба клапана закрыты, поршень направляется вверх. Сжатое топливо зажигается свечой на несколько миллиметров ниже верхней мертвой точки. - Расширение
Далее начинается рабочий ход: газы начинают быстро расширяться. Они давят на поршень, заставляя его двигаться вниз. В этот момент оба клапана закрыты. - Выпуск
Коленчатый вал начинает вращаться по инерции, а поршень снова направляется вверх, открывая выпускной клапан. Газы, которые образовались как результат горения топлива, выходят через выхлопную трубу. Когда поршень достигает верхней точки, выпускной клапан закрывается, и весь процесс повторяется сначала.
Консервация и зимнее хранение лодочных двигателей
На веслах море не переплыть (литовская поговорка)
Хороший рыбак всегда озаботится лодочным мотором.
Двигатель на лодке – это, в том числе, комфорт, удобство и удовольствие от рыбалки. Но наступает время, когда заканчивается сезон и появляется необходимость постановки лодки и мотора на консервацию. Хороший и рачительный хозяин знает, правильно подготовленный к хранению двигатель позволит рыбаку вовремя начать сезон.
Нужна ли консервация лодочного мотора
Пренебрежение процедурой консервации на зимнее время, приводит обычно к долгому и дорогостоящему ремонту. И в таком случае можно не только пропустить сезон, но и сильно потратиться на ремонт.
Подготовка к консервации и хранению лодочного мотора
Прежде всего, необходимо провести предварительную подготовку.
1. В случае если лодочный мотор эксплуатировался на морской воде, обязательно необходимо промыть пресной водой.
2. Подготовить место для хранения, хранить лодочный мотор необходимо в вертикальном положении. Желательно приобрести специальную стойку.
Она значительно облегчает работы во время процедуры консервации. И в дальнейшем обеспечивает вертикальное хранение.
3. Провести внешний осмотр и дефектов.
4. Снять капот и удалить все загрязнения под капотом. (См схему)
5. Удалить необходимо грязь, песок остатки старой смазки, если такая имеется.
- Очистку от загрязнений маслом и смазкой, лучше производить безопасными очистителями. Рекомендуем использовать: быстрый очиститель спрей Schnell-Reiniger
- Все электро- контакты и соединения обработать очистителем контактов Kontaktreiniger
- Для исключения возникновения очагов коррозии обязательно обработать контакты: спреем для электропроводки Electronic-Spray
Ревизия и замена масла в редукторе
Редуктор лодочного мотора требует особого внимания — данная часть лодочного мотора максимально подвержена воздействию воды, малейший дефект может привести к сложному и дорогостоящему ремонту.
1. Обязательно слить старое масло. Это необходимо, для определения состояния масла, наличия в нем воды и продуктов износа. Вторая причина — старое масло уже окислилось, если его оставить на следующий сезон, то процесс коррозии на деталях неизбежен.
2. Наличие воды в масле говорит, об износе прокладок и сальников. Обязательно произвести дефектовку, и заменить поврежденное уплотнение.
3. Обязательно проинспектировать состояние водяной помпы, для этого необходимо демонтировать корпус редуктора. Импеллер помпы должен быть целым, корпус помпы без следов износа. В случае повреждений, детали необходимо заменить.
4. Демонтаж корпуса редуктора и дейдвуда позволяет оценить состояние приводного вала.
После полной инспекции и устранения недостатков необходимо залить свежее масло.
Рекомендуется использовать: минеральное трансмиссионное масло для водной техники Marine Gear Oil 80W-90 Масло обеспечить высокую надежность работы узлов и агрегатов коробок передач и редукторов подвесных судовых двигателей в условиях тяжелых нагрузок во время эксплуатации.
Гребной винт
Гребной винт — деталь, на которую приходится максимальная нагрузка при эксплуатации.
В процессе эксплуатации винт подвергается механическому воздействию воды. И в случае неаккуратного движения возможно повреждение о дно либо наезд на препятствие.
В конце сезона при постановке на консервацию, винт необходимо дефектовать, это позволит исключить многие поломки в дальнейшей эксплуатации.
Проверить состояние кромок лопастей на отсутствие повреждений, при не критичном износе возможна правка. В случае если нарушена целостность лопастей, винт необходимо заменить.
Обязательно проверить балансировку гребного винта. Нарушение балансировки в дальнейшем вызовет дисбаланс и ненужные вибрации
Топливная система
Обслуживание топливной системы лодочного мотора — наиболее важная часть из всех процедур по консервации. От качества проведенных работ очень сильно зависит, как двигатель поведет себя после сезонного простоя.
1. Вне зависимости от типа лодочного мотора 2-х тактный или 4-х тактный двигатель прежде всего необходимо очистить систему.
Рекомендуем использовать: Очиститель для бензиновых топливных систем водной техники Marine Fuel-System-Cleaner
2. Добавить в бак: Стабилизатор бензина для водной техники Marine Fuel Stabilizer
Двигатель
ДВС лодочного мотора — основная составляющая. Консервация узлов двигателя — это залог его успешного запуска после долго простоя. После проведения всех работ по обслуживанию трансмиссии, топливной системы необходимо законсервировать цилиндро-поршневую группу. Данная процедура производиться следующим образом.
1. Выкручиваем свечи зажигания.
2. В свечные колодцы разбрызгиваем специальный консервант: Внутренний консервант судового двигателя Marine Storage Fogging Oil.
3. Проворачиваем коленвал и распыляем еще раз.
4. Закручиваем свечи.
Сопутствующие работы
Провести работы по смазке поворотного механизма. Предварительно очистив все механизмы от старой смазки.
Использовать необходимо специальные смазки, стойкие к воде, рекомендуется использовать: Смазка для водной техники Marine Grease. Это густая смазка в сочетании с современными присадками, обеспечивает надежную смазку и антикоррозионную защиту узлов и агрегатов различной водной техники.
Хранение законсервированного лодочного двигателя зимой
Хранить подготовленный лодочный мотор, лучше всего, в сухом гараже. В вертикальном положении на специальной стойке. Но для 100% исключения появления очагов коррозии рекомендуется обработать все доступные поверхности и детали мультиспреем для водной техники Marine Multi-Spray
Как проводить расконсервацию и подготовку к сезону лодочного мотора после зимы
При правильной и качественной консервации для ввода в строй понадобиться минимум действий.
1. Проверить внешнее состояние узлов и агрегатов лодочного мотора
2. Установить его на лодку
3. Подключить топливный бак
4. Завести двигатель
Правильная и качественная консервация лодочного мотора, позволяет минимизировать возможность какого-либо ремонта и существенно поднимает надежность работы агрегатов и узлов. Применение качественных материалов и технических жидкостей существенно сокращает время по вводу в эксплуатацию в новом сезоне. Liqui Moly является одним из ведущих европейских производителей продуктов для водной техники. Вся продукция производится исключительно на собственном заводе компании в Германии.